Refine Your Search

Topic

Search Results

Standard

CHEMICAL METHODS FOR THE MEASUREMENT OF NONREGULATED DIESEL EMISSIONS

1989-10-01
HISTORICAL
J1936_198910
This document encompasses analytical procedures for measuring nonregulated diesel exhaust emissions. Methods are recommended for the measurement of aldehydes and carbonyl compounds, sulfates and the characterization of diesel exhaust particulates. Informational methods are presented for the measurement of polycyclic aromatic hydrocarbons (PAH) in diesel exhaust particulate samples. The procedures are based on current proven chemical and engineering practices. However, it should be noted that the procedures are subject to change to keep pace with established experience and technology.
Standard

CONSTANT VOLUME SAMPLER SYSTEM FOR EXHAUST EMISSIONS MEASUREMENT

1978-04-01
HISTORICAL
J1094A_197804
This SAE Recommended Practice describes uniform laboratory techniques for employing the constant volume sampler (CVS) system in measuring various constituents in the exhaust gas of gasoline engines installed on passenger cars and light trucks. The techniques described relate particularly to CVS systems employing positive displacement pumps. In some areas of CVS practice, alternate procedures are given as a guide toward development of uniform laboratory techniques. The report includes the following sections: 1. Introduction 2. Definitions 3. Test Equipment 3.1 Sampler 3.2 Bag Analysis 3.3 Modal Analysis 3.4 Instrument Operating Procedures 3.5 Supplementary Discussions 3.6 Tailpipe Connections 3.7 Chassis Dynamometer 4. Operating and Calibrating Procedure 4.1 Calibration 4.2 Operating Procedures 5. Data Analysis 5.1 Bag Analysis 5.2 Modal Analysis 5.3 Background 5.4 Fuel Economy 6. Safety
Standard

CONSTANT VOLUME SAMPLER SYSTEM FOR EXHAUST EMISSIONS MEASUREMENT

1992-06-01
HISTORICAL
J1094_199206
This SAE Information Report describes uniform laboratory techniques for employing the constant volume sampler (CVS) system in measuring various constituents in the exhaust gas of gasoline engines installed on passenger cars and light trucks. The techniques described relate particularly to CVS systems employing positive displacement pumps. This is essentially an almost obsolete system relative to usage in industry and government. Current practice favors the use of a critical flow venturi to measure the diluted exhaust flow. In some areas of CVS practice, alternative procedures are given as a guide toward development of uniform laboratory techniques. The report includes the following sections: Introduction 1. Scope 2. References 2.1 Applicable Publications 3. Definitions 4. Test Equipment 4.1 Sampler 4.2 Bag Analysis 4.3 Modal Analysis 4.4 Instrument Operating Procedures 4.5 Supplementary Discussions 4.6 Tailpipe Connections 4.7 Chassis Dynamometer 5.
Standard

CONTINUOUS HYDROCARBON ANALYSIS OF DIESEL EMISSIONS

1988-06-01
HISTORICAL
J215_198806
The method presented is the current recommendation for the use of flame ionization detectors to determine the hydrocarbon content of diesel engine exhaust, or exhaust of vehicles using diesel engines, when operating at steady-state. The requirements of the associated sampling system and a general procedure for a continuous measuring method are presented.
Standard

CONTINUOUS HYDROCARBON ANALYSIS OF DIESEL EMISSIONS

1980-01-01
HISTORICAL
J215_198001
The method presented is the current recommendation for the use of flame ionization detectors to determine the hydrocarbon content of diesel engine exhaust, or exhaust of vehicles using diesel engines, when operating at steady-state. The requirements of the associated sampling system and a general procedure for a continuous measuring method are presented.
Standard

CONTINUOUS HYDROCARBON ANALYSIS OF DIESEL EMISSIONS

1970-11-01
HISTORICAL
J215_197011
The method presented is the current recommendation for the use of flame ionization detectors to determine the hydrocarbon content of diesel engine exhaust, or exhaust of vehicles using diesel engines, when operating at steady-state. The requirements of the associated sampling system and a general procedure for a continuous measuring method are presented.
Standard

CONTINUOUS HYDROCARBON ANALYSIS OF DIESEL EMISSIONS

1995-03-01
HISTORICAL
J215_199503
The method presented is the current recommendation for the use of flame ionization detectors to determine the hydrocarbon content of diesel engine exhaust, or exhaust of vehicles using diesel engines, when operating at steady-state. The requirements of the associated sampling system and a general procedure for a continuous measuring method are presented.
Standard

Constant Volume Sampler System for Exhaust Emissions Measurement

2011-09-06
CURRENT
J1094_201109
This SAE Information Report describes uniform laboratory techniques for employing the constant volume sampler (CVS) system in measuring various constituents in the exhaust gas of gasoline engines installed on passenger cars and light trucks. The techniques described relate particularly to CVS systems employing positive displacement pumps. This is essentially an almost obsolete system relative to usage in industry and government. Current practice favors the use of a critical flow venturi to measure the diluted exhaust flow. In some areas of CVS practice, alternative procedures are given as a guide toward development of uniform laboratory techniques. The report includes the following sections: Introduction 1. Scope 2. References 2.1 Applicable Publications 3. Definitions 4. Test Equipment 4.1 Sampler 4.2 Bag Analysis 4.3 Modal Analysis 4.4 Instrument Operating Procedures 4.5 Supplementary Discussions 4.6 Tailpipe Connections 4.7 Chassis Dynamometer 5.
Standard

Continuous Hydrocarbon Analysis of Diesel Emissions

2002-10-21
CURRENT
J215_200210
The method presented is the current recommendation for the use of flame ionization detectors to determine the hydrocarbon content of diesel engine exhaust, or exhaust of vehicles using diesel engines, when operating at steady-state. The requirements of the associated sampling system and a general procedure for a continuous measuring method are presented. This SAE Recommended Practice provides for the continuous measurement of the hydrocarbon concentration in diesel exhaust.
Standard

DIESEL EMISSION PRODUCTION AUDIT TEST PROCEDURE

1988-05-01
HISTORICAL
J1243_198805
The recommended practice applies to a production dynamometer test procedure which can be used to measure the smoke and gaseous emission characteristics of vehicular diesel engines. This procedure describes the smoke emission test method, smoke test cycle, gaseous emission test method, steady-state gaseous emission test cycle, equipment, instrumentation, calibration, data analysis, and correlation of results for comparison of production engine emission performance to the requirements of current or past Federal regulations. Variations in engines, instrumentation, and test equipment may require modifications to these procedures or data reduction methods. The acceptability of this procedure is dependent upon documented statistical data appropriate to correlate all tests, data reduction techniques, and special instrumentation to the required Federal tests.
Standard

DIESEL EMISSION PRODUCTION AUDIT TEST PROCEDURE

1979-08-01
HISTORICAL
J1243_197908
The recommended practice applies to a production dynamometer test procedure which can be used to measure the smoke and gaseous emission characteristics of vehicular diesel engines. This procedure describes the smoke emission test method, smoke test cycle, gaseous emission test method, gaseous emission test cycle, equipment, instrumentation, calibration, data analysis, and correlation of results for comparison of production engine emissions performance to the requirements of the Federal regulations. Variations in engines, instrumentation, and test equipment may require modifications to these procedures or data reduction methods. The acceptability of this procedure is dependent upon documented statistical data appropriate to correlate all tests, data reduction techniques, and special instrumentation to the required Federal tests.
Standard

DIESEL EMISSION PRODUCTION AUDIT TEST PROCEDURE

1978-10-01
HISTORICAL
J1243_197810
The recommended practice applies to a production dynamometer test procedure which can be used to measure the smoke and gaseous emission characteristics of vehicular diesel engines. This procedure describes the smoke emission test method, smoke test cycle, gaseous emission test method, gaseous emission test cycle, equipment, instrumentation, calibration, data analysis, and correlation of results for comparison of production engine emissions performance to the requirements of the Federal regulations. Variations in engines, instrumentation, and test equipment may require modifications to these procedures or data reduction methods. The acceptability of this procedure is dependent upon documented statistical data appropriate to correlate all tests, data reduction techniques, and special instrumentation to the required Federal tests.
Standard

DIESEL ENGINE EMISSION MEASUREMENT PROCEDURE

1990-06-01
HISTORICAL
J1003_199006
This SAE Recommended Practice is intended for use as a test procedure to determine the gaseous emission levels of diesel engines. Its purpose is to provide a map of an engine's emissions characteristics which, through use of the proper weighting factors, can be used as a measure of that engine's emission levels under various applications. The emission results for hydrocarbons, nitrogen oxides, carbon monoxide, and carbon dioxide are expressed in units of grams per kilowatt hour (grams/brake horsepower hour) and represent the mass rate of emissions per unit of work accomplished. The emissions are measured in accordance with SAE Recommended Practices J177, J215, and J244 using nondispersive infrared equipment for CO and CO2, a heated flame ionization analyzer for HC, and a high performance NDIR or a chemiluminescence analyzer for NOx. All emissions are measured during steady-state engine operation.
Standard

DIESEL ENGINE SMOKE MEASUREMENT

1995-02-24
HISTORICAL
J255_199502
Measurement of diesel smoke in an accurate and consistent manner has been a serious problem for engine and vehicle manufacturers, users, and agencies charged with enforcing smoke limits. Several instruments, based on different principles and using different scales, are commonly used. In addition to these, human observation and judgment are often used to relate smoke to a variety of standards. The purpose of this SAE Information Report is to provide an understanding of the nature of diesel smoke, how it can be measured, and how the various measurement methods can be correlated. Except for defining the various types of smoke, the report deals solely with the steady-state measurement of visible, black smoke emitted from diesel engines. For the benefit of those who wish to study various aspects of the subject in greater depth, a list of useful references is included in Section 2. This document is divided into the following sections:
Standard

DIESEL SMOKE MEASUREMENT PROCEDURE

1973-01-01
HISTORICAL
J35_197301
The recommended practice applies to the dynamometer test procedure which can be used to assess the smoke emission characteristics of vehicular diesel engines. In particular, these procedures describe the smoke emissions test, smoke test cycle, equipment and instrumentation, instrument checks, and chart reading and calculation, for evaluation of an engine’s steady-state and transient smoke emission characteristics. A full-flow smoke opacimeter as opposed to other types of smokemeters is required because the test is designed to monitor transient smoke. Sampling type instruments have an excessive and variable delay and do not provide an accurate measurement of the engine’s transient smoke output. An Appendix shows that the Beer-Lambert law can be used to correlate opacity measurements with different meter path lengths. Additional or modified test conditions may be requested when this recommended practice is cited in a request for a smoke assessment.
Standard

DIESEL SMOKE MEASUREMENT PROCEDURE

1988-09-01
HISTORICAL
J35_198809
The recommended practice applies to the dynamometer test procedure which can be used to assess the smoke emission characteristics of vehicular diesel engines. In particular, this procedure describes the smoke test cycle, equipment and instrumentation, instrument checks, chart reading and calculation for evaluation of an engine’s transient smoke emission characteristic. In addition, this procedure offers guidelines to be used in establishing correlation between full flow in-line and end-of-line opacimeters. Since the type of test described here is transient in nature, a fast responding full flow opacimeter is required for the smoke measurements. Slow responding or sampling, or both, type instruments must not be used since they typically have excessive and variable response delays and do not provide an accurate measurement of an engine’s transient smoke characteristics.
X