Refine Your Search

Topic

Search Results

Technical Paper

Z-type Schlieren Setup and its Application to High-Speed Imaging of Gasoline Sprays

2011-08-30
2011-01-1981
Schlieren and shadowgraph imaging have been used for many years to identify refractive index gradients in various applications. For evaporating fuel sprays, these techniques can differentiate the boundary between spray regions and background ambient gases. Valuable information such as the penetration rate, spreading angle, spray structure, and spray pattern can be obtained using schlieren diagnostics. In this study, we present details of a z-type schlieren system setup and its application to port-fuel-injection gasoline sprays. The schlieren high-speed movies were used to obtain time histories of the spray penetration and spreading angle. Later, these global parameters were compared to specifications provided by the injector manufacturer. Also, diagnostic parameters such as the proportion of light cut-off at the focal point and the orientation of knife-edge (schlieren-stop) used to achieve the cut-off were examined.
Technical Paper

Vortex Development and Heat Release Enhancement in Diesel Spray Flame by Inversed-Delta Injection Rate Shaping Using TAIZAC Injector

2021-09-05
2021-24-0037
The enhancement of vortex development, fuel-air mixing and heat release in diesel spray flame by inversed-delta injection rate shaping, having been predicted via LES simulation with detailed chemical kinetics, is experimentally confirmed for the first time. Newly developed 3-injector TAIZAC (TAndem Injector Zapping ACtivation) injector realizing aggressive inversed-delta injection rate shaping was used for single-shot combustion experiments in a constant volume combustion vessel. Simultaneous high-speed (120,000fps) and high-resolution (1,280 x 704 pixels) laser schlieren and UV OH* chemiluminescence imaging combined with subsequent Flame Imaging Velocimetry (FIV) analysis was employed to elucidate the correlation between vortex development and enhanced heat release.
Journal Article

Visualization of Diesel Spray Penetration, Cool-Flame, Ignition, High-Temperature Combustion, and Soot Formation Using High-Speed Imaging

2009-04-20
2009-01-0658
Shadowgraph/schlieren imaging techniques have often been used for flow visualization of reacting and non-reacting systems. In this paper we show that high-speed shadowgraph visualization in a high-pressure chamber can also be used to identify cool-flame and high-temperature combustion regions of diesel sprays, thereby providing insight into the time sequence of diesel ignition and combustion. When coupled to simultaneous high-speed Mie-scatter imaging, chemiluminescence imaging, pressure measurement, and spatially-integrated jet luminosity measurements by photodiode, the shadowgraph visualization provides further information about spray penetration after vaporization, spatial location of ignition and high-temperature combustion, and inactive combustion regions where problematic unburned hydrocarbons exist. Examples of the joint application of high-speed diagnostics include transient non-reacting and reacting injections, as well as multiple injections.
Technical Paper

Uncertainty in Sampling and TEM Analysis of Soot Particles in Diesel Spray Flame

2013-04-08
2013-01-0908
For better understanding of soot formation and oxidation processes applicable to diesel engines, the size, morphology, and nanostructure of soot particles directly sampled in a diesel spray flame generated in a constant-volume combustion chamber have been investigated using Transmission Electron Microscopy (TEM). For this soot diagnostics, the effects of the sampling processes, TEM observation methodology and image processing methods on the uncertainty in the results have not been extensively discussed, mainly due to the complexity of the analysis.
Technical Paper

Triple Injection Strategies for Gasoline Compression Ignition (GCI) Combustion in a Single-Cylinder Small-Bore Common-Rail Diesel Engine

2019-04-02
2019-01-1148
Implementing triple injection strategies in partially premixed charge-based gasoline compression ignition (GCI) engines has shown to achieve improved engine efficiency and reduced NOx and smoke emissions in many previous studies. While the impact of the triple injections on engine performance and engine-out emissions are well known, their role in controlling the mixture homogeneity and charge premixedness is currently poorly understood. The present study shows correspondence between the triple injection strategies and mixture homogeneity/premixedness through the experimental tests of second/third injection proportion and their timing variations with an aim to explain the observed GCI engine performance and emission trends. The experiments were conducted in a single cylinder, small-bore common-rail diesel engine fuelled with a commercial gasoline fuel of 95 research octane number (RON) and running at 2000 rpm and 830 kPa indicated mean effective pressure conditions.
Journal Article

Transmission Electron Microscopy of Soot Particles Directly Sampled in Diesel Spray Flame - A Comparison between US#2 and Biodiesel Soot

2012-04-16
2012-01-0695
For a better understanding of soot formation and oxidation processes in conventional diesel and biodiesel spray flames, the morphology, microstructure and sizes of soot particles directly sampled in spray flames fuelled with US#2 diesel and soy-methyl ester were investigated using transmission electron microscopy (TEM). The soot samples were taken at 50mm from the injector nozzle, which corresponds to the peak soot location in the spray flames. The spray flames were generated in a constant-volume combustion chamber under a diesel-like high pressure and high temperature condition (6.7MPa, 1000K). Direct sampling permits a more direct assessment of soot as it is formed and oxidized in the flame, as opposed to exhaust PM measurements. Density of sampled soot particles, diameter of primary particles, size (gyration radius) and compactness (fractal dimension) of soot aggregates were analyzed and compared. No analysis of the soot micro-structure was made.
Journal Article

Transient Liquid Penetration of Early-Injection Diesel Sprays

2009-04-20
2009-01-0839
Diesel low-temperature combustion strategies often rely on early injection timing to allow sufficient fuel-ambient mixing to avoid NOx and soot-forming combustion. However, these early injection timings permit the spray to penetrate into a low ambient temperature and density environment where vaporization is poor and liquid impingement upon the cylinder liner and piston bowl are more likely to occur. The objective of this study is to measure the transient liquid and vapor penetration at early-injection conditions. High-speed Mie-scatter and shadowgraph imaging are employed in an optically accessible chamber with a free path of 100 mm prior to wall impingement and using a single-spray injector. The ambient temperature and density within the chamber are well-controlled (uniform) and selected to simulate in-cylinder conditions when injection occurs at -40 crank-angle degrees (CAD) or fewer before top-dead center (TDC).
Technical Paper

The Influence of Charge Dilution and Injection Timing on Low-Temperature Diesel Combustion and Emissions

2005-10-24
2005-01-3837
The effects of charge dilution on low-temperature diesel combustion and emissions were investigated in a small-bore single-cylinder diesel engine over a wide range of injection timing. The fresh air was diluted with additional N2 and CO2, simulating 0 to 65% exhaust gas recirculation in an engine. Diluting the intake charge lowers the flame temperature T due to the reactant being replaced by inert gases with increased heat capacity. In addition, charge dilution is anticipated to influence the local charge equivalence ratio ϕ prior to ignition due to the lower O2 concentration and longer ignition delay periods. By influencing both ϕ and T, charge dilution impacts the path representing the progress of the combustion process in the ϕ-T plane, and offers the potential of avoiding both soot and NOx formation.
Technical Paper

The Effect of Swirl Ratio and Fuel Injection Parameters on CO Emission and Fuel Conversion Efficiency for High-Dilution, Low-Temperature Combustion in an Automotive Diesel Engine

2006-04-03
2006-01-0197
Engine-out CO emission and fuel conversion efficiency were measured in a highly-dilute, low-temperature diesel combustion regime over a swirl ratio range of 1.44-7.12 and a wide range of injection timing. At fixed injection timing, an optimal swirl ratio for minimum CO emission and fuel consumption was found. At fixed swirl ratio, CO emission and fuel consumption generally decreased as injection timing was advanced. Moreover, a sudden decrease in CO emission was observed at early injection timings. Multi-dimensional numerical simulations, pressure-based measurements of ignition delay and apparent heat release, estimates of peak flame temperature, imaging of natural combustion luminosity and spray/wall interactions, and Laser Doppler Velocimeter (LDV) measurements of in-cylinder turbulence levels are employed to clarify the sources of the observed behavior.
Technical Paper

Studying the Influence of Direct Injection on PCCI Combustion and Emissions at Engine Idle Condition Using Two Dimensional CFD and Stochastic Reactor Model

2008-04-14
2008-01-0021
A detailed chemical model was implemented in the KIVA-3V two dimensional CFD code to investigate the effects of the spray cone angle and injection timing on the PCCI combustion process and emissions in an optical research diesel engine. A detailed chemical model for Primary Reference Fuel (PRF) consisting of 157 species and 1552 reactions was used to simulate diesel fuel chemistry. The model validation shows good agreement between the predicted and measured pressure and emissions data in the selected cases with various spray angles and injection timings. If the injection is retarded to -50° ATDC, the spray impingement at the edge of the piston corner with 100° injection angle was shown to enhance the mixing of air and fuel. The minimum fuel loss and more widely distributed fuel vapor contribute to improving combustion efficiency and lowering uHC and CO emissions in the engine idle condition.
Journal Article

Soot Volume Fraction and Morphology of Conventional, Fischer-Tropsch, Coal-Derived, and Surrogate Fuel at Diesel Conditions

2012-04-16
2012-01-0678
Future fuels will come from a variety of feed stocks and refinement processes. Understanding the fundamentals of combustion and pollutants formation of these fuels will help clear hurdles in developing flex-fuel combustors. To this end, we investigated the combustion, soot formation, and soot oxidation processes for various classes of fuels, each with distinct physical properties and molecular structures. The fuels considered include: conventional No. 2 diesel (D2), low-aromatics jet fuel (JC), world-average jet fuel (JW), Fischer-Tropsch synthetic fuel (JS), coal-derived fuel (JP), and a two-component surrogate fuel (SR). Fuel sprays were injected into high-temperature, high-pressure ambient conditions that were representative of a practical diesel engine. Simultaneous laser extinction measurement and planar laser-induced incandescence imaging were performed to derive the in-situ soot volume fraction.
Technical Paper

Soot Formation Modelling of Spray-A Using a Transported PDF Approach

2015-09-01
2015-01-1849
Numerical simulations of soot formation were performed for n-dodecane spray using the transported probability density function (TPDF) method. Liquid n-dodecane was injected with 1500 bar fuel pressure into a constant-volume vessel with an ambient temperature, oxygen volume fraction and density of 900 K, 15% and 22.8 kg/m3, respectively. The interaction by exchange with the mean (IEM) model was employed to close the micro-mixing term. The unsteady Reynolds-averaged Navier-Stokes (RANS) equations coupled with the realizable k-ε turbulence model were used to provide turbulence information to the TPDF solver. A 53-species reduced n-dodecane chemical mechanism was employed to evaluate the reaction rates. Soot formation was modelled with an acetylene-based two-equation model which accounts for simultaneous soot particle inception, surface growth, coagulation and oxidation by O2 and OH.
Journal Article

Size Distribution and Structure of Wall-Deposited Soot Particles in an Automotive-Size Diesel Engine

2013-10-14
2013-01-2534
Wall-deposition of soot particles occurs during the cylinder liner wall/flame interaction, which can potentially deteriorate engine oil quality and alter the heat loss rate in a diesel engine. These issues motivate a detailed study on structure and size of the wall-deposited soot particles. A morphological difference between the wall-deposited soot and in-flame soot particles is another focus of this study. We performed thermophoretic soot sampling in the cylinder liner wall using an in-liner-type sampler. Obtained soot particles were imaged by a transmission electron microscope and post-processed to acquire the number of particles, projection area on the sampling grid, and size distribution. The same set of data was also obtained for soot particles within the diesel flame using a probe-type sampler.
Journal Article

Optimisation of Image Processing Parameters for Flame Image Velocimetry (FIV) Measurement in a Single-Cylinder, Small-Bore Optical Diesel Engine

2019-04-02
2019-01-0719
High-speed soot luminosity movies are widely used to visualise flame development in optical diesel engines thanks to its simple setup and relatively low cost. Recent studies demonstrated the high-speed soot luminosity movies are not only effective in showing the overall distribution and temporal evolution of sooting flames but also flow fields within the flame through the application of combustion (or flame) image velocimetry. The present study aims to improve this imaging technique by systematically evaluating key image processing parameters based on high-speed soot luminosity movies obtained from a single-cylinder, small-bore optical diesel engine. The raw soot luminosity movies are processed using PIVlab - a Matlab-based open-source code widely used for particle image velocimetry (PIV) applications.
Journal Article

Nanostructure Analysis of In-flame Soot Particles under the Influence of Jet-Jet Interactions in a Light-Duty Diesel Engine

2015-09-06
2015-24-2444
Some soot particles emitted from common-rail diesel engines are so small that can penetrate deep into the human pulmonary system, causing serious health issues. The analysis of nano-scale internal structure of these soot particles sampled from the engine tailpipe has provided useful information about their reactivity and toxicity. However, the variations of carbon fringe structures during complex soot formation/oxidation processes occurring inside the engine cylinder are not fully understood. To fill this gap, this paper presents experimental methods for direct sampling and nanostructure analysis of in-flame soot particles in a working diesel engine. The soot particles are collected onto a lacey carbon-coated grid and then imaged in a high-resolution transmission electron microscope (HR-TEM). The HR-TEM images are post-processed using a Matlab-based code to obtain key nanostructure parameters such as carbon fringe length, fringe-to-fringe separation distance, and fringe tortuosity.
Technical Paper

Multiple Injection Strategy Investigation for Well-Mixed Operation in an Optical Wall-Guided Spark-Ignition Direct-Injection (WG-SIDI) Engine through Flame Shape Analysis

2016-10-17
2016-01-2162
One major drawback of spark-ignition direct-injection (SIDI) engines is increased particulate matter (PM) and unburned hydrocarbon emissions at high load, due to wall wetting and a reduction in available air/fuel mixing time when compared to port-fuel injection (PFI). It is therefore necessary to understand the mechanics behind injection strategies which are capable of reducing these emissions while also maintaining the performance and efficiency of the engine. This study investigates the effect of varying the number fuel injection events and equivalence ratio on the operation of a wall-guided SIDI (WG-SIDI) engine. Of particular interest is how increased mixture homogeneity achieved by the double injection events impacts in-cylinder conditions and flame development.
Technical Paper

Mechanisms of NOx Production and Heat Loss in a Dual-Fuel Hydrogen Compression Ignition Engine

2021-04-06
2021-01-0527
The combustion process of a homogeneous hydrogen charge in a small-bore compression ignition engine with diesel-pilot ignition was simulated using the CONVERGE computational fluid dynamics code. Analysis of the simulation results aimed to understand the processes leading to NOx production and heat loss in this combustion strategy, and their dependence on the hydrogen fuel energy fraction. Previous experimental results demonstrated promising performance, but this comes with a penalty in increased NOx emissions and potentially higher heat losses. The present study aims to enhance understanding of the mechanisms governing these phenomena. The simulated engine was initialised with a lean homogeneous hydrogen-air mixture at BDC and n-dodecane was injected as a diesel surrogate fuel near TDC. The simulations were validated based on experimental results for up to 50% hydrogen energy fraction, followed by an exploratory study with variation of the energy fraction from 0% to 90%.
Journal Article

Liquid Penetration of Diesel and Biodiesel Sprays at Late-Cycle Post-Injection Conditions

2010-04-12
2010-01-0610
The liquid and vapor-phase spray penetrations of #2 diesel and neat (100%) soybean-derived biodiesel have been studied at late expansion-cycle conditions in a constant-volume optical chamber. In modern diesel engines, late-cycle staged injections may be used to assist in the operation of exhaust stream aftertreatment devices. These late-cycle injections occur well after top-dead-center (TDC), when post-combustion temperatures are relatively high and densities are low. The behavior of diesel sprays under these conditions has not been well-established in the literature. In the current work, high-speed Mie-scatter and schlieren imaging are employed in an optically accessible chamber to characterize the transient and quasi-steady liquid penetration behavior of diesel sprays under conditions relevant for late-cycle post injections, with very low densities (1.2 - 3 kg/m 3 ) and moderately high temperatures (800 - 1400 K).
Journal Article

Injection Pressure Effects on the Flame Development in a Light-Duty Optical Diesel Engine

2015-04-14
2015-01-0791
The impact of fuel injection pressure on the development of diesel flames has been studied in a light-duty optical engine. Planer laser-induced fluorescence imaging of fuel (fuel-PLIF) and hydroxyl radicals (OH-PLIF) as well as line-of-sight integrated chemiluminescence imaging of cool-flame and OH* were performed for three different common-rail pressures including 70, 100, and 130 MPa. The injection timing and injected fuel mass were held constant resulting in earlier end of injection for higher injection pressure. The in-cylinder pressure was also measured to understand bulk-gas combustion conditions through the analysis of apparent heat release rate. From the cool-flame images, it is found that the low-temperature reaction starts to occur in the wall-interacting jet head region where the fuel-air mixing could be enhanced due to a turbulent ring-vortex formed during jet-wall interactions.
Technical Paper

Influence of Injection Timing for Split-Injection Strategies on Well-Mixed High-Load Combustion Performance in an Optically Accessible Spark-Ignition Direct-Injection (SIDI) Engine

2017-03-28
2017-01-0657
One major drawback of spark-ignition direct-injection (SIDI) engines is increased particulate matter (PM) emissions at high load, due to increased wall wetting and a reduction in available mixture preparation time when compared to port-fuel injection (PFI). It is therefore necessary to understand the mechanics behind injection strategies which are capable of reducing these emissions while also maintaining the performance and efficiency of the engine. Splitting the fuel delivery into two or more injections is a proven way of working towards this goal, however, many different injection permutations are possible and as such there is no clear consensus on what constitutes an ideal strategy for any given objective. In this study, the effect of the timing of the first and second injections for an evenly split dual injection strategy are investigated in an optical SIDI engine running at 1200 RPM with an unthrottled intake.
X