Refine Your Search

Topic

Search Results

Technical Paper

Visualization and Performance Analysis of Gasoline Homogeneous Charge Induced Ignition by Diesel

2005-04-11
2005-01-0136
In order to enhance the thermal efficiency of gasoline engines, a combustion mode namely Homogeneous Charge Induced Ignition (HCII) was introduced and examined in this paper. Port-injected gasoline was used as the main fuel and formed a homogeneous charge in the cylinder. Diesel was used as the pilot fuel, directly injected into the cylinder, and self-ignited and this induced the ignition of the premixed gasoline-air charge. The images of HCII combustion process were taken on an optical engine through a high-speed CMOS camera. The multi-point induced ignition phenomena were observed and the parameters like flame luminance, ignition delay and combustion duration were analyzed by image analysis. The result shows that as the gasoline/diesel ratio increases with a fixed low pilot amount, the ignition delay increases, the initial ignition area extends from the center towards the periphery of the combustion chamber, and the combustion velocity increased.
Technical Paper

Urea Decomposition at Low Temperature in SCR Systems for Diesel Engines

2014-10-13
2014-01-2808
Selective catalytic reduction (SCR) has been demonstrated as one of the most promising technologies to reduce NOx emissions from heavy-duty diesel engines. To meet the Euro VI regulations, the SCR system should achieve high NOx reduction efficiency even at low temperature. In the SCR system, NH3 is usually supplied by the injection of urea water solution (UWS), therefore it is important to improve the evaporation and decomposition efficiency of UWS at low temperature and minimize urea deposits. In this study, the UWS spray, urea decomposition, and the UWS impingement on pipe wall at low temperature were investigated based on an engine test bench and computational fluid dynamics (CFD) code. The decomposition of urea and deposits was analyzed using thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and fourier transform infrared spectroscopy (FTIR).
Journal Article

Transient Emissions Characteristics of a Turbocharged Engine Fuelled by Biodiesel Blends

2013-04-08
2013-01-1302
The effects of different biodiesel blends on engine-out emissions under various transient conditions were investigated in this study using fast response diagnostic equipment. The experimental work was conducted on a modern 3.0 L, V6 high pressure common rail diesel engine fuelled with mineral diesel (B0) and three different blends of rapeseed methyl esters (RME) (B30, B60, B100 by volume) without any modifications of engine parameters. DMS500, Fast FID and Fast CLD were used to measure particulate matter (PM), total hydrocarbon (THC) and nitrogen monoxide (NO) respectively. The tests were conducted during a 12 seconds period with two tests in which load and speed were changed simultaneously and one test with only load changing. The results show that as biodiesel blend ratio increased, total particle number (PN) and THC were decreased whereas NO was increased for all the three transient conditions.
Technical Paper

The Impact of GDI Injector Deposits on Engine Combustion and Emission

2017-10-08
2017-01-2248
Gasoline direct injection (GDI) engine technology is now widely used due to its high fuel efficiency and low CO2 emissions. However, particulate emissions pose one challenge to GDI technology, particularly in the presence of fuel injector deposits. In this paper, a 4-cylinder turbocharged GDI engine in the Chinese market was selected and operated at 2000rpm and 3bar BMEP condition for 55 hours to accumulate injector deposits. The engine spark timing, cylinder pressure, combustion duration, brake specific fuel consumption (BSFC), gaseous pollutants which include total hydro carbon (THC), NOx (NO and NO2) and carbon dioxide (CO), and particulate emissions were measured before and after the injector fouling test at eight different operating conditions. Test results indicated that mild injector fouling can result in an effect on engine combustion and emissions despite a small change in injector flow rate and pulse width.
Technical Paper

The Impact of Fuel Properties from Chinese Market on the Particulate and VOCs Emissions of a PFI and a DIG Engine

2016-04-05
2016-01-0838
An experimental study of particulate matter and volatile organic compounds (VOCs) emissions was conducted on a direct injection gasoline (DIG) engine and a port fuel injection (PFI) engine which both were produced by Chinese original equipment manufacturers (OEMs) to investigate the impact of fuel properties from Chinese market on particulate and VOCs emissions from modern gasoline vehicles. The study in this paper is just the first step of the work which is to investigate the impact of gasoline fuel properties and light duty vehicle technologies on the primary and secondary emissions, which are the sources of particulate matter 2.5 (PM2.5) in the atmosphere in China. It is expected through the whole work to provide some suggestions and guidelines on how to improve air quality and mediate severe haze pollution in China through fuel quality control and vehicle technology advances.
Technical Paper

Study of Injection Strategies of Two-stage Gasoline Direct Injection (TSGDI) Combustion System

2005-04-11
2005-01-0107
Gasoline Direct Injection (GDI) engines developed at nineties of the twentieth century can greatly improve the fuel economy. But the combustion chamber design and mixture control of the engines are very complex compared with Port Fuel Injection (PFI) gasoline engines. A two-stage gasoline direct injection (TSGDI) combustion system is developed and aimed to solve the problem of the complexity. Two-stage fuel injection and flexible injection timings are adopted as main means to form reasonable stratified mixture in the cylinder. A simple combustion chamber and helical intake port are designed to assist the mixture's stable combustion, which reduces the difficulties of the combustion system design. Systematical simulation and experimental studies of the effects of injection strategies such as different first,second injection timings and injection ratios, on the mixture formation processes and engine performanc are made in detail.
Technical Paper

Study of Engine Knock in HCCI Combustion using Large Eddy Simulation and Complex Chemical Kinetics

2014-10-13
2014-01-2573
This paper studied the knock combustion process in gasoline HCCI engines. The complex chemical kinetics was implemented into the three-dimensional CFD code with LES (Large eddy simulation) to study the origin of the knock phenomena in HCCI combustion process. The model was validated using the experimental data from the cylinder pressure measurement. 3D-CFD with LES method gives detailed turbulence, species, temperature and pressure distribution during the gasoline HCCI combustion process. The simulation results indicate that HCCI engine knock originates from the random multipoint auto-ignition in the combustion chamber due to the slight inhomogeneity. It is induced by the significantly different heat release rate of high temperature oxidation (HTO) and low temperature oxidation (LTO) and their interactions.
Technical Paper

Simulation of Catalyzed Diesel Particulate Filter for Active Regeneration Process Using Secondary Fuel Injection

2017-10-08
2017-01-2287
Advanced exhaust after-treatment technology is required for heavy-duty diesel vehicles to achieve stringent Euro VI emission standards. Diesel particulate filter (DPF) is the most efficient system that is used to trap the particulate matter (PM), and particulate number (PN) emissions form diesel engines. The after-treatment system used in this study is catalyzed DPF (CDPF) downstream of diesel oxidation catalyst (DOC) with secondary fuel injection. Additional fuel is injected upstream of DOC to enhance exothermal heat which is needed to raise the CDPF temperature during the active regeneration process. The objective of this research is to numerically investigate soot loading and active regeneration of a CDPF on a heavy-duty diesel engine. In order to improve the active regeneration performance of CDPF, several factors are investigated in the study such as the effect of catalytic in filter wall, soot distribution form along filter wall, and soot loads.
Technical Paper

Research on Steady and Transient Performance of an HCCI Engine with Gasoline Direct Injection

2008-06-23
2008-01-1723
In this paper, a hybrid combustion mode in four-stroke gasoline direct injection engines was studied. Switching cam profiles and injection strategies simultaneously was adopted to obtain a rapid and smooth switch between SI mode and HCCI mode. Based on the continuous pressure traces and corresponding emissions, HCCI steady operation, HCCI transient process (combustion phase adjustment, SI-HCCI, HCCI-SI, HCCI cold start) were studied. In HCCI mode, HCCI combustion phase can be adjusted rapidly by changing the split injection ratio. The HCCI control strategies had been demonstrated in a Chery GDI2.0 engine. The HCCI engine simulation results show that, oxygen and active radicals are stored due to negative valve overlap and split fuel injection under learn burn condition. This reduces the HCCI sensitivity on inlet boundary conditions, such as intake charge and intake temperature. The engine can be run from 1500rpm to 4000rpm in HCCI mode without spark ignition.
Technical Paper

Research of the Primary Breakup of a Planar Liquid Sheet Produced by an Air-Blast Atomizer

2014-04-01
2014-01-1430
The primary breakup of a planar liquid sheet produced by an air-blast atomizer was studied through numerical simulations, in order to reveal physical mechanisms involved during this process. The reliability of simulations was verified by comparing the macroscopic parameters, e.g. breakup time and spatial growth rate, with experimental data. Shear instability and RT (Rayleigh-Taylor) instability were found to play important roles during the primary breakup. By analyzing the acceleration of a fluid parcel within liquid sheet using Discrete Particle Method, and measuring the wave length of transverse unstable wave, RT instability was found to be partially responsible for transverse instability. The predictions of LISA (Linearized Instability Sheet Atomization) model on breakup time were compared to experiments, and obvious differences were found to exist.
Technical Paper

PLII-LEM and OH* Chemiluminescence Study on Soot Formation in Spray Combustion of PODEn-Diesel Blend Fuels in a Constant Volume Vessel

2017-10-08
2017-01-2329
Polyoxymethylene dimethyl ethers (PODEn) are promising alternative fuel candidates for diesel engines because they present advantages in soot reduction. This study uses a PODEn mixture (contains PODE3-6) from mass production to provide oxygen component in blend fuels. The spray combustion of PODEn-diesel bend fuels in a constant volume vessel was studied using high speed imaging, PLII-LEM and OH* chemiluminescence. Fuels of several blend ratios are compared with pure diesel. Flame luminance data show a near linear decrease tendency with the blend ratio increasing. The OH* images reveal that the ignition positions of all the cases have small differences, which indicates that using a low PODEn blend ratio of no more than 30% does not need significant adjustment in engine combustion control strategies. It is found that 30% PODEn blended with diesel (P30) can effectively reduce the total soot by approximately 68% in comparison with pure diesel.
Technical Paper

PIV Measurement and Numerical Simulation of Flows in Automotive Catalytic Converters

2001-09-24
2001-01-3494
In this paper a Particle Image Velocimetry (PIV) was used to measure flow velocity fields in different inlet cones under different mass flux conditions on a steady state flow rig. Meanwhile, a mathematical model of the flow in catalytic converters was established and simulated using CFD code. Validation of the model shows that simulation results have a good agreement with experiments, which means that the established model is feasible and can be applied to predict the flow characteristics in catalytic converters with different inlet cone configurations. Experimental and computational results indicate that the inlet cone configuration significantly affects flow distribution. For a conventional inlet cone, the cone angle is one of the key factors to affect flow characteristics and should be kept as small as possible in a design. An enhanced inlet cone can greatly improve flow uniformity in catalytic converters.
Technical Paper

Numerical methods of improving computation efficiency on diesel spray and combustion using large eddy simulation in KIVA3V code

2014-04-01
2014-01-1149
Unlike RANS method, LES method needs more time and much more grids to accurately simulate the spray process. In KIVA, spray process was modeled by Lagrangain-drop and Eulerian-fluid method. The coarse grid can cause errors in predicting the droplet-gas relative velocity, so for reducing grid dependency due to the relative velocity effects, an improved spray model based on a gas-jet theory is used in this work and in order to validate the model seven different size grids were used. In this work, the local dense grid was used to reduce the computation cost and obtain accurate results that also were compared with entire dense grid. Another method to improve computation efficiency is the MUSCL (Monotone Upstream-centered Schemes for Conservation Laws) differencing scheme that was implemented into KIVA3V-LES code to calculate the momentum convective term and reduce numerical errors.
Technical Paper

Numerical Study of DMF and Gasoline Spray and Mixture Preparation in a GDI Engine

2013-04-08
2013-01-1592
2, 5-Dimethylfuran (DMF) has been receiving increasing interest as a potential alternative fuel to fossil fuels, owing to the recent development of new production technology. However, the influence of DMF properties on the in-cylinder fuel spray and its evaporation, subsequent combustion processes as well as emission formation in current gasoline direct injection (GDI) engines is still not well understood, due to the lack of comprehensive understanding of its physical and chemical characteristics. To better understand the spray characteristics of DMF and its application to the IC engine, the fuel sprays of DMF and gasoline were investigated by experimental and computational methods. The shadowgraph and Phase Doppler Particle Analyzer (PDPA) techniques were used for measuring spray penetration, droplet velocity and size distribution of both fuels.
Technical Paper

Numerical Simulation of Mixture Formation and Combustion of Gasoline Engines With Multi-Stage Direct Injection Compression Ignition (DICI)

2003-03-03
2003-01-1091
Homogeneous Charge Compression Ignition (HCCI) combustion concept has advantages of high thermal efficiency and low emissions. However, how to control HCCI ignition timing is still a challenge in the application. This paper tries to control HCCI ignition timing using gasoline direct injection (DI) into cylinder to form a desired mixture of fuel and air. A homogeneous charge can be realized by advancing injection timing in intake stroke and a stratified charge can be obtained by retarding injection timing in compression stroke. Multi-stage injection strategy is used to control the mixture concentration distribution in the cylinder for HCCI combustion. A three-dimensional Computational Fluid Dynamics (CFD) code FIRE™ is employed to simulate the effects of single injection timing and multi-stage injection on mixture formation and combustion. Effects of mixture concentration and inlet temperature on HCCI ignition timing are also investigated in this paper.
Technical Paper

Numerical Simulation of HCCI Engine With Multi-Stage Gasoline Direct Injection Using 3D-CFD With Detailed Chemistry

2004-03-08
2004-01-0563
In this paper, the detailed chemical kinetics was implemented into the three-dimensional CFD code to study the combustion process in HCCI engines. An extended hydrocarbon oxidation reaction mechanism (89 species, 413 reactions) used for high octane fuel was constructed and then used to simulate the chemical process of the ignition, combustion and pollutant formation in HCCI conditions. The three-dimensional CFD / chemistry model (FIRE/CHEMKIN) was validated using the experimental data from a Rapid Compression Machine. The simulation results show good agreements with experiments. Finally, the improved multi-dimensional CFD code has been employed to simulate the intake, spray, combustion and pollution formation process of the gasoline direct injection HCCI engine with multi-stage injection strategy. The models account for intake flow structure, spray atomization, spray/wall interaction, droplet evaporation and gas phase chemistry in complex multi-dimensional geometries.
Technical Paper

Numerical Resolution of Multiple Premixed Compression Ignition (MPCI) Mode and Partially Premixed Compression Ignition (PPCI) Mode for Low Octane Gasoline

2013-10-14
2013-01-2631
Two premixed compression ignition modes for low octane gasoline are numerically investigated. The multiple premixed compression ignition (MPCI) mode is featured with a sequence of “spray- combustion- spray- combustion”, while the partially premixed compression ignition (PPCI) mode is a sequence of “spray- spray- combustion”. This paper compares the combustion process of the two modes using multi-dimensional CFD code, KIVA-3v, which can perform chemical reaction calculations for different fuels by a discrete multiple component (DMC) method. The fuel used for simulation consists of 58.5% i-C8H18 and 41.5% n-C7H16 in volume, and has the same RON and similar physical properties to straight-run naphtha used in the experiment. The engine operating condition is fixed at a 1600rpm and 0.7 MPa IMEP. The injection strategies for these two modes are different. All of the parameters in the simulation come from the single cylinder engine experiments.
Technical Paper

Numerical Investigation on the Effect of Fuel Temperature on Spray Collapse and Mixture Formation Characteristics in GDI Engines

2018-04-03
2018-01-0311
Spray atomization, spray-wall impingement, and mixture formation are key factors in affecting the particulate matter (PM) emission in gasoline direct injection (GDI) engines. Current knowledge of wall-wetting phenomenon and mixture formation are mostly based on the studies that the fuel is injected at ordinary temperature and various ambient conditions. In the real GDI engine, the fuel pipe and injector are always heated up by the pump and the engine body, especially at hot engine conditions, thus the fuel temperature is always higher than the ordinary temperature, and the relevant research is still limited. The aim of this study is to numerically investigate the spray, spray-wall impingement, and mixture formation characteristics under different fuel temperature conditions, so as to provide theoretical support in optimizing the combustion performance and further reducing the PM emission of GDI engines.
Technical Paper

Numerical Analysis on the Potential of Reducing DPF Size Using Low Ash Lubricant Oil

2018-09-10
2018-01-1760
Diesel particulate filter (DPF) is necessary for diesel engines to meet the increasingly stringent emission regulations. Many studies have demonstrated that the lubricant derived ash has a significant effect on DPF pressure drop and engine fuel economy, and this effect becomes more and more severe with the increasing of operating hours of the DPF because the ash accumulated in the DPF cannot be removed by regeneration. It is reported that most of the DPFs operated with more ash than soot in the filter for more than three quarters of the time during its lifetime [1]. In order to mitigate this problem, the original engine manufacturers (OEM) tend to use an oversized DPF for the engine. However, it will increase the costs of the DPF and reduce the compactness of the engine aftertreatment system.
Technical Paper

Multi-dimensional Simulation of HCCI Engine Using Parallel Computation and Chemical Kinetics

2008-04-14
2008-01-0966
This study improved the computational efficiency significantly using parallel computation and reduced mechanisms. A 3-dimensional engine moving mesh of intake port, exhaust port and combustion chamber was established for HCCI engine cycle simulation. To achieve a more accurate analysis, chemical kinetics was implemented into the CFD code to study the intake, spray, ignition, combustion, and pollution formation process in HCCI engine. The simulations were run on a cluster of 16-CPU, parallelized by Message-Passing Interface (MPI) mode. The cases with detailed and reduced reaction mechanisms were calculated using 1, 2, 4, 8, 16 CPUs respectively and the corresponding computational time and speed-up were discussed. Using MPI 8-CPU with reduced mechanism (less than 40 species) is the optimal scheme for CFD/Chemistry calculation of typical HCCI engine.
X