Refine Your Search

Topic

Search Results

Technical Paper

Ceramic Converter Technology for Automotive Emissions Control

1991-09-01
911736
This paper reviews the development and successful application of ceramic catalytic converters for controlling automotive exhaust emissions. It presents the scientific rationale for designing the high surface area substrate to meet both performance and durability requirements. This is followed by a step-by-step design process for each of the converter components. The initial design stage focuses on understanding automaker's requirements and optimizing component design commensurate with them. The intermediate stage involves laboratory testing of converter components in simulated environment and ensuring component compatibility from durability point of view. The final design stage addresses the critical tests on converter assembly to ensure performance and field durability. In addition, it examines the necessary trade-offs and associated design modifications and evaluates their impact on warranty cost for system failure.
Technical Paper

Design Considerations for Advanced Ceramic Catalyst Supports

2000-03-06
2000-01-0493
Stringent emissions standards with 95+% conversion efficiency requirements call for advanced ceramic catalyst supports with thinner walls, higher cell density and optimum cell shape. The extrusion technology for cellular ceramics has also made significant progress which permits the manufacture of advanced catalyst supports. Similarly, modifications in cordierite chemistry and the manufacturing process have led to improved microstructure from coatability and thermal shock points of view. The design of these supports, however, requires a systems approach to balance both the performance and durability requirements. Indeed as the wall gets thinner, the contribution of washcoat becomes more significant in terms of thermal mass, heat transfer, thermal expansion, hydraulic diameter and structural stiffness - all of which have an impact on performance and durability. For example, the thinner the wall is, the better the light-off performance will be.
Technical Paper

Design Considerations for Diesel Flow-Through Converters

1992-02-01
920145
The large frontal area cordierite ceramic flow-through converter for diesel emissions must meet the 290K vehicle mile durability requirement, almost a six fold increase over that of automotive converters. This paper compares the size, the geometry and the operating conditions of automotive vs. diesel converters and suggests ways to design the converter system to meet the challenging durability requirements without compromising its performance with respect to back pressure and conversion efficiency. It is shown that the mechanical durability of the system, which is critical for meeting the 290K vehicle mile durability, can best be met by ensuring good compatibility between the substrate and washcoat and by designing a rugged packaging system with positive mounting pressure under all driving conditions.
Technical Paper

Design Considerations for Mounting Material for Ceramic Wail-Flow Diesel Filters

1984-02-01
840074
An important element of the diesel filter assembly is a resilient ceramic mat placed between the ceramic filter and the stainless steel can. It has four key functions: i) to provide adequate gripping pressure, ii) to permit free axial expansion of can, iii) to act as a seal for gases, and iv) to minimize temperature gradients in the filter, which require certain mat properties, namely low-to-medium compression modulus, low shear modulus, and low friction coefficient between mat and filter. This paper compares the properties and performance of two different mats, Interam® I and III, in “hot shake” and “exhaust gas simulator” tests. The results indicate that Interam® III is a superior material for diesel filter application and that a complete coverage by this mat will prolong the durability of the filter.
Technical Paper

Durability and Performance of Thin Wall Ceramic Substrates

1999-01-13
990011
The stringent emissions standards in the late 1990's like NLEV, ULEV and SULEV have led to major modifications in the composition and design of ceramic substrates. These changes have been necessitated to reduce cold start emissions, meet OBD-II requirements, and to ensure 100,000 mile durability requirement in a cost-effective manner. This paper presents the key advances in ceramic substrates which include lower thermal expansion, lighter weight, higher surface area and improved manufacturing process all of which help meet performance requirements. In addition to above benefits, the compressive and tensile strengths of lightweight substrates, as well as their thermal shock resistance, are found to be adequate following the application of high surface area alumina washcoat. The strength properties are crucial for ensuring safe handling of the substrate during coating and canning and for its long term mechanical durability in service.
Technical Paper

Dynamic Fatigue Data for Cordierite Ceramic Wall-Flow Diesel Filters

1991-02-01
910135
The dynamic fatigue data for two different cordierite ceramic wall-flow diesel filter compositions, EX-54 and EX-66, are obtained at 200° and 400°C using the 4-point bend test. These compositions offer larger mean pore size and experience lower pressure drop than the EX-47 composition, and hence are more desirable for certain applications. Their fatigue behavior in the operating temperature range is found to be equivalent or superior to that of EX-47 composition which helps promote filter durability. The fatigue data are used to arrive at a safe allowable stress, which would ensure the required 290K vehicle mile durability. The paper also discusses the impact of mean pore size on high temperature strength and fatigue properties and their effect on filter durability.
Technical Paper

Experimental Verification of Residual Compression in Tempered Automotive Glass with Holes

2003-01-18
2003-26-0012
Tempered float glass is commonly used for both side windows and backlites in the automotive industry. The success of such products is primarily attributed to high level of residual compression, following tempering, which provides abrasion resistance as well as 3X higher functional strength to sustain mechanical, vibrational and thermal stresses during the vehicle's lifetime. Certain applications of tempered glass, however, require mounting holes whose surface-finish must be controlled carefully to withstand transient tensile stresses during tempering. Simultaneously, the nature and magnitude of residual compression at the hole must provide sufficient robustness to bear mounting, vibrational and thermal stresses throughout the life of the vehicle. This paper presents (i) analysis of residual compression at the hole, (ii) measurement of biaxial strength of annealed glass with hole at center, and (iii) measurement of biaxial strength of tempered glass with hole at center.
Technical Paper

Failure Modes During Static and Impact Loading of Light-Weight Rectangular Glass Headlamps

1984-04-01
840745
An approximate analytical solution for stress distribution in the rectangular lens of a glass headlamp due to static and impact loading is presented. Both low mass/high velocity and high mass/low velocity impact data and the resulting failure modes are discussed. Generally, glass headlamp lenses break either due to Hertz stress (front surface under high localized tension), or due to flexural stress (back surface under tension due to bending), or the combination of two. Failure due to flexural stress is illustrated by a star-crack, while that due to Hertz stress is illustrated by a Hertzian cone or “bullet hole” in the lens. The failure mode during low mass/high velocity impact is predominantly Hertzian while that during high mass/low velocity impact is flexural for lenses 0.120″ to 0.150′ thick. No significant differences are observed in the impact resistance of standard and light-weight lenses in this thickness range.
Technical Paper

High Temperature Compressive Strength of Extruded Cordierite Ceramic Substrates

1995-02-01
950787
High temperature modulus of rupture (MOR) data, published previously, show that the ceramic catalyst supports get stronger with temperature due to the absence of water vapor and closure of microcracks which would otherwise act as stress concentrators [1, 2 and 3]*. The increased MOR value is partially responsible for the excellent durability of ceramic catalyst supports at high temperature. In this paper, we will present the compressive strength data of ceramic substrates at high temperature, namely the crush strength along B-axis and biaxial compressive strength of the whole substrate. Since the honeycomb strength is directly related to that of the individual cell wall, the compressive strength should also increase with temperature similar to the modulus of rupture. Accordingly, the ceramic substrates are capable of supporting higher mounting pressures exerted by the intumescent mat at high temperature [4].
Technical Paper

High Temperature Creep Behavior of Ceramic and Metal Substrates

1991-02-01
910374
The high temperature creep data for radial specimens, cut from metal and ceramic substrates and subjected to compressive loads representative of mounting and thermal pressure are presented as function of load and temperature. These data show that the creep resistance of metallic specimens under sustained loading varies with temperature and is orders of magnitude lower than that of ceramic specimens. The observed creep deformation in metallic specimens reduces their open frontal area and hydraulic diameter with potentially adverse impact on pressure drop across the metallic substrate.
Technical Paper

High Temperature Fatigue in Ceramic Honeycomb Catalyst Supports

1985-10-01
852100
The high temperature dynamic fatigue data for the catalyst support composition, EX-20, 400/6.8, are presented. These data indicate that the fatigue effects are more severe when the substrate temperature in the peripheral region is near 200°C. The major impact of high temperature fatigue is the slow degradation of substrate’s initial strength while in service. Such a degradation must be taken into account in designing the total converter package to meet life requirements. For the EX-20, 400/6.8 substrate, approximately 50% of its initial strength is available to withstand the combined stresses from mechanical, thermal, and vibrational loads in service. At temperatures well above 200°C, the available design strength can be as high as 65% of substrate’s initial strength. The fatigue theory, the measurement technique, and the application of fatigue data to long term durability of cordierite substrates are discussed.
Technical Paper

High Temperature Fatigue in Ceramic Wall-Flow Diesel Filters

1985-02-01
850010
Under certain operating conditions when the combined stresses in a ceramic wall-flow diesel filter from mechanical, thermal, and vibrational loads exceed its threshold strength, the fatigue effects become important. This paper reviews the theory of static and dynamic fatigue, and presents fatigue data for Coming's high efficiency filter composition (EX-47, 100/17) in the temperature range 25° - 400°C which is representative of the stressed peripheral region during regeneration. The measurement and analysis of fatigue data, together with the implication on long-term durability of cordierite ceramic filters, is discussed.
Technical Paper

Impact of Washcoat Formulation on Properties and Performance of Cordierite Ceramic Converters

1991-10-01
912370
The dual requirement of high conversion efficiency and 50K mile durability for cordierite ceramic converters is achievable through optimization of washcoat and catalyst formulation. This paper presents new data for high temperature physical properties, light-off performance, conversion efficiency and pressure drop through an oval cordierite ceramic converter with triangular cell structure and two different washcoat formulations; namely standard vs high-tech. Both of the washcoat systems have a beneficial effect on strength properties with nominal impact on thermal shock resistance. Both the standard and high-tech catalysts provide identical light-off performance for CO, HC and NOx conversion. The high-tech washcoat and catalyst system, in particular, provides consistently superior conversion efficiency for CO, HC and NOx. The pressure drop across the catalyst depends on hydraulic diameter and is only 8% higher for high-tech washcoat than for standard washcoat.
Technical Paper

Isostatic Strength of Porous Cordierite Ceramic Monoliths

1991-02-01
910375
The isostatic strength of porous cordierite ceramic monoliths plays an important role during canning and subsequent operation of automotive catalysts. Its value depends on wall porosity, cell geometry, skin thickness and morphology, monolith size and contour, and substrate/washcoat interaction. If the stresses induced by canning loads and closure speeds exceed the isostatic strength, the monolith may exhibit either crushing or shear type failure. This paper presents the room temperature isostatic strength data for coated and uncoated ceramic monoliths of different contour, size, and cell geometry. The applied isostatic load on the monolith is translated into stresses in the porous cell wall using both an analytical model and finite element analysis. It is found that the failure criteria are governed by the fundamental tensile and compressive strengths of the cell wall.
Technical Paper

Long-Term Durability of Ceramic Honeycombs for Automotive Emissions Control

1985-02-01
850130
Ceramic honeycomb structures have been used successfully as catalyst supports in gasoline-powered vehicles for the past ten years. They are currently the leading candidate for trapping and oxidizing the carbonaceous particulate emissions in diesel-powered vehicles. In both of these applications the long term durability of the ceramic substrate is of prime importance. This, in turn, depends on the physical properties of cellular structure, cyclic nature of service loads and design of the mounting assembly. This paper examines the nature and dependence of both the mechanical and thermal stresses in the substrate on its geometry, properties, mounting parameters, and the operating conditions. It also compares the observed failure modes with those predicted by the theory. The paper concludes with a set of recommendations for optimal systems design and acceptable operating conditions which will promote the long term durability of the ceramic substrate.
Technical Paper

Mechanical Integrity of Ceramic Monolithic Converters

1981-11-01
811324
The converter assembly consists of a ceramic monolith with racetrack cross-section, a suitable “springy” mat wrapped around it and a clam-shell steel can to contain and guard these components against road hazards. The process to effect this assembly is rather dynamic and introduces directional loads onto the monolith in view of the anisotropic stiffness of the can. If these loads exceed certain values, they may cause failure of the monolith either by crushing it or by shearing it. In this paper we analyze the stiffness of various components of converter assembly, determine the load distribution around the monolith, and modify the design of can and monolith to make the load distribution more favorable. It is concluded that the converter assembly can be optimized and the failure of monoliths, if any, eliminated during closure. The present monoliths do not suffer from such failure.
Technical Paper

Optimization of Substrate/Washcoat Interaction for Improved Catalyst Durability

1991-02-01
910372
The substrate/washcoat systems which preserve both the mechanical and thermal attributes of cordierite substrates are most desirable for prolonged durability of automotive catalysts. This paper provides a micromechanics viewpoint of substrate/washcoat composite whose properties are predictable, measurable and relevant to catalyst durability. The micromechanics model helps quantify substrate/washcoat interaction which controls the long-term catalyst performance. Three different examples of substrate/washcoat systems are used here to illustrate the optimization process during the development of new substrates or washcoat technologies to meet the more stringent emission and durability requirements of advanced catalysts for the 1990s.
Technical Paper

Physical Durability of Thin Wall Ceramic Substrates

1998-10-19
982635
Significant advances in composition and the manufacturing process have led to thin wall cordierite ceramic substrates with low thermal mass, high surface area, and large open frontal area-properties that are critical for fast light-off, high conversion efficiency and low back pressure. Indeed, such substrates are ideal catalyst supports for meeting the ever-stringent emissions regulations, ala SULEV and ULEV, as demonstrated by recent performance data1. This paper focuses on the physical durability of 400/4 and 600/4 cordierite ceramic substrates. In particular, it presents strength, fatigue, and modulus data which influence the mechanical durability. In addition, it presents thermal expansion data which impact the thermal durability. Both of these durabilities are examined as a function of operating temperature.
Technical Paper

Size Effect on the Strength of Ceramic Catalyst Supports

1992-10-01
922333
The typical ceramic catalyst support for automotive application has a total volume of 1640 cm3. Approximately 10% of this volume is subjected to tensile thermal stresses due to a radial temperature gradient in service [1]*. These stresses are kept below 50% of the substrate strength to minimize fatigue degradation and to ensure long-term durability [2]. However, the tensile strength measurements are carried out in 4-point bending using 2.5 cm wide x 1.2 cm thick x 10 cm long modulus of rupture bars in which the specimen volume subjected to tensile stress is merely 3.2 cm3 or 0.2% of the total substrate volume [3]. Thus, a large specimen population is often necessary (50 specimens or more) to obtain the strength distribution representative of full substrate. This is particularly true for large frontal area substrates for diesel catalyst supports with an order of magnitude larger stressed volume. In this paper, the modulus of rupture data are obtained as function of specimen size.
Technical Paper

Strength and Thermal Shock Resistance of Segmented Wall-Flow Diesel Filters

1986-03-01
860008
The physical properties, including modulus of rupture, structural modulus and thermal expansion coefficient of segmented, large frontal area, ceramic wall-flow diesel filters are presented. The effect of cement composition, its coverage and segmentation pattern on these properties and on the failure modes during strength testing is discussed. Using these properties the mechanical and thermal integrities of LFA filter are computed and compared with those of monolithic filter,. The paper discusses both the high efficiency (EX-47, 100/17) and low efficiency (EX-66, 100/25) filter compositions.
X