Refine Your Search

Topic

Search Results

Technical Paper

W/O Emulsion Realizes Low Smoke and Efficient Operation of DI Engines without High Pressure injection

1989-02-01
890449
To improve engine performance parameters such as smoke, NOx, and BSFC in a DI diesel engine, water-in-gas oil emulsified fuel was used without high pressure or high injection rate. It was confirmed that when compared with high pressure and high injection rate operation with gas oil, emulsified fuel gives significant reductions in NOx concentration, improved fuel economy, and reduced smoke density at ordinary injection pressure and retarded timings.
Technical Paper

Unique Measuring Method of Indicator Diagrams Using Strain History of Head Bolts

1980-09-01
800983
To get accurate indicator diagrams without the use of pressure transducers, the strain and the displacement of the various parts of engine structures that would have some relationship with the pressure variation in the cylinder were measured and analyzed mathematically. By measuring the strain of the cylinder head bolts, the horizontal displacement of the crank shaft end, and the vertical displacement of the intake valve stem, we realized that the indicator diagrams could be obtained easily without a passage from the interior to the outside of the combustion chamber. Accurate indicator diagrams were estimated by applying the pressure-strain diagram obtained from the static pressure test in the cylinder to the strain variation in the cylinder head bolts. On this occasion, the accuracy of the estimated indicator diagrams could be improved by providing the cylinder head system with a one degree freedom vibration system.
Technical Paper

Theory and Experiments on Air-Entrainment in Fuel Sprays and Their Application to Interpret Diesel Combustion Processes

1995-02-01
950447
This paper presents a theory and its experimental validation for air entrainment changes into fuel sprays in DI diesel engines. The theory predicts air entrainment changes for a variety of swirl speeds, number of nozzle holes, nozzle diameters, engine speeds, injection speeds and fuel densities. The formulae of the theory are simple non-dimensional equations, which apply for different sized engines. Experiments were performed to compare theoretical predictions and experimental results in six different engines varying from 85 to 800mm bore. All results showed good agreement with the theoretical predictions for shallow-dish piston engines. However the agreement became poor in the case of deep cavity piston engines. With the theory, it is possible to interpret a variety of combustion phenomena in diesel engines, providing additional understanding of diesel combustion processes.
Technical Paper

The Microcrystal Structure of Soot Particulates in the Combustion Chamber of Prechamber Type Diesel Engines

1990-09-01
901579
To clarify the microcrystal structure of soot particulate in the combustion chamber, we examined sampling methods which freeze the reaction of sample specimens from the combustion chamber and collected the soot particulates on microgrids. We investigated the microcrystal structure with a high resolution transmission electron microscope. The results were: the particle size distribution and the microcrystal structure of the soot particulates is little different for the cooled freezing method and room temperature sampling. The typical layer plane structure which characterizes graphite carbon is not observed in the exhaust of diesel engines, but some particulates display a somewhat similar layer plane structure. The structure of soot particulate is a turbostratic structure as the electron diffraction patterns show polycrystals. The soot particulates in the combustion chamber is similar to exhaust soot particulates.
Technical Paper

The Effects of Flash Boiling Fuel Injection on Spray Characteristics” Combustion, and Engine Performance in DI and IDI Diesel Engines

1985-02-01
850071
This paper deals with the effects of flash-boiling injection of various kinds of fuels on spray characteristics, combustion, and engine performance in DI and IDI diesel engines. It is known that spray characteristics change dramatically at the boiling point of fuel. When the fuel temperature increases above the boiling point, the droplet size decreases apparently and the spray spreads much wider. At higher fuel temperatures, above the boiling point, the apparent effects are a lower smoke density and improved thermal efficiency at higher loads, resulting from the shorter combustion duration; it is thus possible to obtain a markedly improved engine performance in engines with a low air-utilization chamber. Remarkable changes in heat release with the increase in fuel temperature are; an increase in premised combustion quantity and shortening of the combustion duration. The changes in smoke emission and thermal efficiency for different engine types are also considered in this paper.
Technical Paper

The Effect of Oxygenated Fuel Additive on the Reduction of Diesel Exhaust Particulates

2001-05-07
2001-01-2020
The blending of dimethyl carbonate (DMC), which contains 53% of oxygen, in diesel fuel is very effective to suppress the formation of exhaust particulates, however, the mechanism of the suppression has not been made clear. In this study, the comparison on the performance of gas oil and DMC mixture was achieved. The effect of the oxygen in DMC molecule has to suppress the formation of particulates was monitored by way of using thermal cracking analyzer under various conditions.
Technical Paper

The Effect of Fuel Properties on Particulate Formation (The Effect of Molecular Structure and Carbon Number)

1989-09-01
891881
Exhaust particulate in diesel engines is affected by fuel properties, but the reason for this is not clear. Interest in using low-grade fuels in diesel engines has made it necessary to understand the particulate formation mechanism and factors to decrease it. Particulate formation has been reported to start with thermal cracking of the fuel to lower boiling point hydrocarbons followed by condensation polymerization and production of benzene ring compounds; the formation of particulate takes place via polycyclic aromatic hydrocarbons. This report investigates the amount and configuration of particulate with a fluid reaction tube and in a nitrogen atmosphere, and analyzes polycyclic aromatic hydrocarbons (PAH) of fuels with different molecular structure and carbon number.
Technical Paper

The Effect of Fuel Properties on Diesel Engine Exhaust Particulate Formation

1989-02-01
890421
Exhaust particulate in diesel engines are affected by fuel properties, especially the aromatic hydrocarbon content and distillation properties, but the reasons for this are not clear. The process of particulate formation has been reported to start with a thermal cracking of the fuel to lower boiling point hydrocarbons followed by condensation polymerization and production of benzene ring compounds; the formation of particulate takes place via polycyclic aromatic hydrocarbons. The fuel properties affect diesel engine particulate because the thermal cracking and condensation polymerization of various fuels are different.
Technical Paper

Study on Exhaust Control Valves and Direct Air-Fuel Injection for Improving Scavenging Process in Two-Stroke Gasoline Engines

1996-02-01
960367
A critical factor in improving performance of crankcase-scavenged two-stroke gasoline engines is to reduce the short-circuiting of the fresh charge to the exhaust in the scavenging process. To achieve this, the authors developed a reciprocating exhaust control valve mechanism and direct air-fuel injection system. This paper investigates the effects of exhaust control valve and direct air-fuel injection in the all aspect of engine performance and exhaust emissions over a wide range of loads and engine speeds. The experimental results indicate that the exhaust control valve and direct air-fuel injection system can improve specific fuel consumption, and that HC emissions can be significantly reduced by the reduction in fresh charge losses. The pressure variation also decreased by the improved combustion process. CRANKCASE SCAVENGED two-stroke gasoline engines suffer from fresh charge losses leading to poor fuel economy and it is a reason for large increases of HC in the exhaust.
Technical Paper

Simultaneous Reductions of Smoke and NOx from a DI Diesel Engine with EGR and Dimethyl Carbonate

1995-10-01
952518
Extensive experiments were conducted on a low emission DI diesel engine by using Dimethyl Carbonate (DMC) as an oxygenate fuel additive. The results indicated that smoke reduced almost linearly with fuel oxygen content. Accompanying noticeable reductions of HC and CO were attained, while a small increase in NOx was encountered. The effective reduction in smoke with DMC was maintained with intake charge CO2, which led to low NOx and smoke emissions by the combined use of oxygenated fuel and exhaust gas recirculation (EGR). Further experiments were conducted on an optically accessible combustion bomb and a thermal cracking set-up to study the mechanisms of DMC addition on smoke reduction.
Technical Paper

Reduction of Smoke and NOx by Strong Turbulence Generated During the Combustion Process in D.I. Diesel Engines

1992-02-01
920467
This paper presents results of experiments to reduce smoke emitted from direct Injection diesel engines by strong turbulence generated during the combustion process. The turbulence was created by jets of burned gas from an auxiliary chamber installed in the cylinder head. Strong turbulence, which was induced late in the combustion period, enhanced the mixing of air with unburned fuel and soot, resulting in a remarkable reduction of smoke and particulate; NOx did not show any increase with this system, and thermal efficiency was improved at high loads. The paper also shows that the combination of EGR and water injection with this system effectively reduces the both smoke and NOx.
Technical Paper

Nature and Reduction of Cycle-to-Cycle Combustion Engine with Ethanol-Diesel Fuel Blends

1983-09-12
831352
Many of the promissing alternative fuels have relatively low cetane numbers, and may-result in combustion variation problems. This paper presents the chracteristics of the cycle-to-cycle combustion variations in diesel engines, and analyzes and evaluates the mechanism. Combustion variations appear in various forms, such as variations in ignition lag, indicated mean effective pressure, maximum combustion pressure, or rate of heat release. These variations are clearly correlated, and it is possible to represent the combustion variations by the standard deviation in the combustion peak pressure. The combustion variations are random (non-periodic), and are affected by ethanol amount, intake air temperature, engine speed and other various operating conditions.
Technical Paper

Mechanism of NOx Reduction by Ethanol on a Silver-Base Catalyst

2001-05-07
2001-01-1935
Since there is a trade-off relationship between NOx and particulates in exhaust gas emitted from a diesel engine, simultaneous reduction of the amounts of NOx and particulates in a combustion chamber is difficult. However, the amount of particulates produced in the combustion process could be reduced in a state of almost complete combustion, and the amount of NOx produced during the combustion process could be reduced by the use of a catalyst and reducing agent in the exhaust process. It has been demonstrated that the use of ethanol as a reducing agent on a silver-base catalyst in the presence of oxygen is an effective means for reducing NOx, although the mechanism of the reduction has not been elucidated. Therefore, in the present study, an NOx-reduction apparatus was conducted, and model experiments on NOx reduction were carried out in an atmosphere simulating exhaust gas emitted from a diesel engine and at the same catalyst temperature as that in a combustion chamber.
Technical Paper

Low Carbon Flower Buildup, Low Smoke, and Efficient Diesel Operation with Vegetable Oils by Conversion to Mono-Esters and Blending with Diesel Oil or Alcohols

1984-09-01
841161
The purpose of this investigation is to evaluate the feasibility of rapeseed oil and palm oil for diesel fuel substitution in a naturally aspirated D.I. diesel engine, and also to find means to reduce the carbon deposit buildup in vegetable oil combustion. In the experiments, the engine performance, exhaust gas emissions, and carbon deposits were measured for a number of fuels: rapeseed oil, palm oil, methylester of rapeseed oil, and these fuels blended with ethanol or diesel fuel with different fuel temperatures. It was found that both of the vegetable oil fuels generated an acceptable engine performance and exhaust gas emission levels for short term operation, but they caused carbon deposit buildups and sticking of piston rings after extended operation.
Technical Paper

Influence of Emulsified Fuel Properties on the Reduction of BSFC in a Diesel Engine

1989-09-01
891841
Micro-explosions and vaporizing behaviors of droplets of various emulsified fuels were investigated to determine the influence of emulsified fuel properties such as water content, water particle size, and viscosity of base fuel on combustion in a diesel engine. The investigation used gas oil, A heavy oil, and B heavy oil mixed with water and evaporated on a hot surface under atmospheric pressure. The influence on the engine performance was also investigated. It was confirmed that the viscosity of the base fuel, the water content, and the water particle size influenced the droplet evaporation on the hot surface and the occurrence and intensity of micro-explosions. There were remarkable differences in the BSFC for emulsified fuels in or outside the range where micro-explosions occurred on the hot surface.
Technical Paper

Improvement of Performance and Emissions of a Compression Ignition Methanol Engine with Dimethyl Ether

1994-10-01
941908
Dimethyl ether (DME) has very good compression ignition characteristics, and can be converted from methanol using a γ - alumina catalyst. A previous report investigated a compression ignition methanol engine with DME as an ignition improver. The results showed that the engine operation was sufficiently smooth without either spark or glow plugs. Two methods were studied, one was an aspiration method, and the other was a torch ignition chamber method (TIC method). The aspiration method allows a simple engine structure, but suffers from poor engine emissions and requires large amounts of DME. With the TIC method where the DME was introduced into a torch ignition chamber (TIC) during the intake stroke, the diffusion of the DME into the main combustion chamber was limited, and significant reductions in both the necessary quantity of DME and emissions were obtained [1][2].
Technical Paper

Formation of Soot Particulates in the Combustion Chamber of a Precombustion Chamber Type Diesel Engine

1984-02-01
840417
To clarify the formation processes of soot particulates in the combustion chamber, we sampled the gas during combustion in a precombustion chamber and a main chamber using an electromagnetic sampling valve, and made a gas analysis by gas chromatography, examined the soot concentration, and size distribution and dispersion of soot particulates with a transmission electron microscope. The following results were obtained: (1) In the prechamber soot particulates form at the period of rapid combustion in the initial stage rather than the end of the diffusion combustion. (2) Soot particulates which were formed in the prechamber were introduced to the main chamber, and a part of the soot particulates were burned. (3) Soot particulates formed at the initial stage of the combustion process exhibited a tendency to become smaller by oxidation. (4) If the oxygen concentration in the combustion chamber is above 5%, the combustion of soot particulates take place.
Technical Paper

Formation Process of SOF in the Combustion Chamber of IDI Diesel Engines

1993-10-01
932799
Exhaust Particulate emitted from diesel engines is a serious problem form the point of view of the environment and energy saving. Exhaust particulate is consist of dry soot and SOF (soluble organic fraction). To clarify the formation process of SOF in the combustion chamber of diesel engines, first lower temperature column condensed method was investigated. The gas from combustion chamber was collected to the sampling column using this method, and the cracked as well as the condensation polymerized components were analyzed with gas chromatography. The sampling condition of the low temperature column condensation method are length of condensation column 600mm, cooling temperature 198K, and dilution ratio 5. The diesel fuel injected into the combustion chamber, first cracks into lower boiling point hydrocarbons, this is followed by dehydrogenation and formation of benzene ring compounds through condensation polymerization. This is followed by the formation of PAH.
Technical Paper

Experimental Reduction of NOx, Smoke, and BSFC in a Diesel Engine Using Uniquely Produced Water (0 - 80%) to Fuel Emulsion

1978-02-01
780224
With the aid of static mixer and non-ionic emulsifying agent, a comparatively stable water-fuel emulsion was obtained. Engine performance in a 4 cycle direct injection engine using these fuels were studied. A large reduction of NOx concentration was obtained over the wide range of engine operation, in spite of increased ignition lag and rapid combustion. Furthermore, improvements of economy and reduction of exhaust smoke were obtained. The reduction of NOx concentration, fuel consumption and smoke were even more remarkable when compared with operating same engine with water fumigation.
Technical Paper

Elimination of Combustion Difficulties in a Glow Plug-Assisted Diesel Engine Operated with Pure Ethanol and Water-Ethanol Mixtures

1983-02-01
830373
Forced ignition with glow plugs has great potential for the utilization of alcohol fuels in diesel engines. However, the installation of glow plugs may cause misfiring or knocking in parts of the operating range. This paper presents an analysis of the factors influencing the ignition characteristics of ethanol in a glow plug-assisted diesel engine; these factors may be classified into two categories: the factors related to the temperature history of the drop lets before contact with the glow plug, and those related to the probability of contact. By optimizing these factors, the combustion difficulties were successfully eliminated over the whole operating range, and engine performance comparable with conventional diesel operation was achieved.
X