Refine Your Search

Search Results

Technical Paper

The Effects of Some Engine Variables on Measured Rates of Air Entrainment and Heat Release in a DI Diesel Engine

1980-02-01
800253
The rate of air entrainment into the flame and the rate of heat release are thermodynamically calculated in a DI diesel engine: A two-zone model is proposed which uses as input data three measured values of cylinder pressure, flame temperature, and injection rate. The correlations between both rates under various conditions make it clear that the combustion during early and main periods of diffusion combustion is mainly controlled by air entrainment into the flame. The effects of injection pressure, piston configuration, and swirl intensity on the air entrainment are also studied. And the extent of mixing in the flame is evaluated by the equivalence ratio in the flame which is also obtained by the same model. The trends of exhausted NO and soot concentrations well correlate with the equivalence ratios in the flame and measured flame temperatures under all conditions studied.
Technical Paper

The Cold Flow Performance and the Combustion Characteristics with Ethanol Blended Biodiesel Fuel

2005-10-24
2005-01-3707
The purpose of this study is to improve low-temperature flow-properties of biodiesel fuels (BDF) by blending with ethanol and to analyze the combustion characteristics in a diesel engine fueled with BDF/ethanol blended fuel. Because ethanol has a lower solidifying temperature, higher oxygen content, lower cetane number, and higher volatility than BDF, ethanol blending would have a large effect on cold flow performance, mixture formation, ignition, combustion, and exhaust emissions. The engine experiments in the study were performed with a diesel engine and blends of BDF and ethanol at different blending ratios. The cold flow performance of the blended fuels was evaluated by determining the fuel cloud point. The experimental results show that the ethanol blending lowers the cloud point of the blended fuel and significantly reduces smoke emissions from the engine without deteriorating other emissions or thermal efficiency.
Technical Paper

The Analysis of Combustion Flame Under EGR Conditions in a DI Diesel Engine

1996-02-01
960323
Since in-cylinder flame temperature has a direct effect on an engine's NOx characteristics, this phenomena has been studied in detail in a multi-cylinder DI diesel engine using a new method allowing the in-cylider temperature distribution to be measured by the two color method. An endoscope is installed in the combustion chamber and flame light introduced from the endoscope is divided into two colors by filters. The images of combustion phenomena using the two wavelengths are recorded with a framing streak camera which includes a CCD camera. The flame temperature and KL factor are immediately calculated by a computer using the two color images from the CCD camera. In the case of EGR, the test was conducted under 75% load conditions. The flame temperature was reduced according to an increase of EGR rate.
Technical Paper

Reexamination of Multiple Fuel Injections for Improving the Thermal Efficiency of a Heavy-Duty Diesel Engine

2013-04-08
2013-01-0909
As a technology required for future commercial heavy-duty diesel engines, this study reexamines the potential of the multiple injection strategy for improving the thermal efficiency while maintaining low engine-out exhaust emissions with a high EGR rate of more than 50% and high boost pressure of 276.3 kPa abs under medium load conditions. The experiments were conducted with a single cylinder research engine. The engine was operated at BMEP of 0.8 MPa at a medium speed. Using multiple injections, the temporal and spatial in-cylinder temperature distribution was changed to investigate the effect on fuel consumption and exhaust emissions. The results showed that the multiple injection strategy combined with higher EGR rate could improve fuel consumption by about 3% due to the reduction of heat loss from the wall.
Technical Paper

Reduction of NOx and PM for a Heavy Duty Diesel Using 50% EGR Rate in Single Cylinder Engine

2010-04-12
2010-01-1120
For reducing NOx emissions, EGR is effective, but an excessive EGR rate causes the deterioration of smoke emission. Here, we have defined the EGR rate before the smoke emission deterioration while the EGR rate is increasing as the limiting EGR rate. In this study, the high rate of EGR is demonstrated to reduce BSNOx. The adapted methods are a high fuel injection pressure such as 200 MPa, a high boost pressure as 451.3 kPa at 2 MPa BMEP, and the air intake port that maintains a high air flow rate so as to achieve low exhaust emissions. Furthermore, for withstanding 2 MPa BMEP of engine load and high boosting, a ductile cast iron (FCD) piston was used. As the final effect, the installations of the new air intake port increased the limiting EGR rate by 5%, and fuel injection pressure of 200 MPa raised the limiting EGR rate by an additional 5%. By the demonstration of increasing boost pressure to 450 kPa from 400 kPa, the limiting EGR rate was achieved to 50%.
Technical Paper

Optimization of Engine System for Application of Biodiesel Fuel

2007-07-23
2007-01-2028
Application of biodiesel fuel (BDF) to diesel engine is very effective to reduce CO2 emission, because biodiesel is carbon neutral in principle. However, biodiesels yield an increase in NOx emission from conventional diesel engine, compared with diesel fuel case. Therefore, some strategies are needed for meeting the future emission regulations when using biodiesel. In this study, rapeseed oil methyl ester (RME) was applied to diesel engine equipped with exhaust gas recirculation (EGR) system and NOx storage reduction (NSR) catalyst. NOx reduction rate of NSR catalyst was drastically decreased by using RME, even if injection quantity of RME for rich spike was enhanced. However, an increase in EGR rate could reduce NOx emission without the deterioration in smoke and PM emissions.
Technical Paper

Numerical Studies on Temporal and Spatial Distribution of Equivalence Ratio in Diesel Combustion Using Large Eddy Simulation

2020-01-24
2019-32-0599
To identify ways of achieving good mixture formation and heat release in diesel spray combustion, we have performed Large Eddy Simulation (LES) using a detailed chemical reaction mechanism to study the temporal and spatial distribution of the local equivalence ratios and heat release rate. Here we characterize the effect of the fuel injection rate profile on these processes in the combustion chamber of a diesel engine. Two injection rate profiles are considered: a standard (STD) profile, which is a typical modern common rail injection profile, and the inverse delta (IVD) profile, which has the potential to suppress rich mixture formation in the spray tip region. Experimental data indicate that the formation of such mixtures may extend the duration of the late combustion period and thus reduce thermal efficiency.
Technical Paper

Numerical Simulation and Experimental Observation of Coolant Flow Around Cylinder Liners in V-8 Engine

1988-02-01
880109
In this paper, the flow patterns and velocity distributions of coolant flow around cylinder liners of diesel engine are studied by numerical calculation and experimental observation. The experiment is carried out by oil film method and direct observation with a transparent acrylic cylinder liner. The calculation is performed with the 3-dimensional model by FEM for fluid flow. The motion of coolant flow by calculation corresponds with the result by oil film method and direct observation with transparent cylinder liner. The visualization of the 3-dimensional calculation gives a good understanding about motion of coolant flow and pressure distribution in water chamber. This method is applied to improve the coolant flow with the stagnation around cylinder liner. The effect of improved design is confirmed by experiment. That is, there are no stagnations in the flow around cylinder liners.
Journal Article

Fundamental Study of Waste Heat Recovery in the High Boosted 6-cylinder Heavy Duty Diesel Engine

2015-04-14
2015-01-0326
In heavy duty diesel engines, the waste heat recovery has attracted much attention as one of the technologies to improve fuel economy further. In this study, the available energy of the waste heat from a high boosted 6-cylinder heavy duty diesel engine which is equipped with a high pressure loop EGR system (HPL-EGR system) and low pressure loop EGR system (LPL-EGR system) was evaluated based on the second law of thermodynamics. The maximum potential of the waste heat recovery for improvement in brake thermal efficiency and the effect of the Rankine combined cycle on fuel economy were estimated for each single-stage turbocharging system (single-stage system) and 2-stage turbocharging system (2-stage system).
Technical Paper

Effects of Initial In-Cylinder Flow Field on Mixture Formation in a Premixed Compression Ignition Engine

2000-03-06
2000-01-0331
To find more effective lean mixture preparation methods for smokeless and low NOx combustion, a numerical study of the effects of in-cylinder flow field before injection on mixture formation in a premixed compression ignition engine was conducted. Premixed compression ignition combustion is a very attractive method to reduce both NOx and soot emissions, but it still has some problems, such as high HC and CO emissions. In case of early direct injection, it is important to avoid wall wetting by spray impingement, which can cause higher HC and CO emissions. Since it is not easy to examine the effects of initial flow and injection parameters on mixture formation over the wide range by practical engine tests, a computer program named “GTT (Generalized Tank and Tube)” code was used to simulate the in-cylinder phenomena before autoignition.
Technical Paper

Effects of High-Boost Turbocharging on Combustion Characteristics and Improving Its Low Engine Speed Torque

1992-02-01
920046
This paper describes the experimental studies of turbocharged and intercooled diesel engines with particular emphasis on combustion characteristics following increase of boost pressure. Through these studies, it has become possible to determine the optimum air quantity for minimizing fuel consumption at each engine speed range under the restrictive conditions of NOx emission, exhaust smoke and maximum cylinder pressure. Discussed also is the lack of air quantity in the low engine speed range of high-boost turbocharged diesel engines. Various turbocharging systems to improve air quantity in this speed range are introduced herein. Practically the engine performance of conventional turbocharging, waste gate control turbocharging and variable geometry turbocharging are discussed from the viewpoint of torque recovery in the low engine speed range.
Technical Paper

Effective Usage of LNT in High Boosted and High EGR Rate of Heavy Duty Diesel Engine

2010-04-12
2010-01-1066
Lean NOx trap (LNT) and Urea-SCR system are effective aftertreatment systems as NOx reduction device in diesel engines. On the other hand, DPF has already been developed as PM reduction device and it has been used in various vehicles. LNT can absorb and reduce NOx emission in wide range exhaust temperatures, from 150°C to 400°C, and the size of LNT component can be compact in comparison with Urea-SCR system because LNT uses the diesel fuel as a reducing agent and it is needless to install the reducing agent tank in the vehicle. In this study, authors have shown that the NOx conversion rate of LNT is high in the case of extremely low NOx concentration from the engine. Also, the effects of LNT and DPF were examined using the Super Clean Diesel (SCD) Engine, which has low NOx level before aftertreatment and has been finished as Japanese national project.
Technical Paper

Effective NOx Reduction in High Boost, Wide Range and High EGR Rate in a Heavy Duty Diesel Engine

2009-04-20
2009-01-1438
The emission reduction from diesel engines is one of major issues in heavy duty diesel engines. Super Clean Diesel (SCD) Engine for heavy-duty trucks has also been researched and developed since 2002. The main specifications of the SCD Engine are six cylinders in-line and 10.5 l with a turbo-intercooled and cooled EGR system. The common rail system, of which the maximum injection pressure is 200 MPa, is adopted. The turbocharger is capable of increasing boost pressure up to 501.3 kPa. The EGR system consists of both a high-pressure loop (HP) EGR system and a low-pressure loop (LP) EGR system. The combination of these EGR systems reduces NOx and PM emissions effectively in both steady-state and transient conditions. The emissions of the SCD Engine reach NOx=0.2 g/kWh and PM=0.01 g/kWh with aftertreatment system. The adopted aftertreatment system includes a Lean NOx Trap (LNT) and Diesel Particulate Filter (DPF).
Technical Paper

Effective BSFC and NOx Reduction on Super Clean Diesel of Heavy Duty Diesel Engine by High Boosting and High EGR Rate

2011-04-12
2011-01-0369
Reduction of exhaust emissions and BSFC was studied for high pressure, wide range, and high EGR rates in a Super-clean Diesel six-cylinder heavy duty engine. The GVW 25-ton vehicle has 10.52 L engine displacement, with maximum power of 300 kW and maximum torque of 1842 Nm. The engine is equipped with high-pressure fuel injection of a 200 MPa level common-rail system. A variable geometry turbocharger (VGT) was newly designed. The maximum pressure ratio of the compressor is about twice that of the previous design: 2.5. Additionally, wide range and a high EGR rate are achieved by high pressure-loop EGR (HP-EGR) and low pressure-loop EGR (LP-EGR) with described VGT and high-pressure fuel injection. The HP-EGR can reduce NOx concentrations in the exhaust pipe, but the high EGR rate worsens smoke. The HP-EGR system layout has an important shortcoming: it has great differences of the intake EGR gas amount into each cylinder, worsens smoke.
Technical Paper

Effect of Exhaust Gas Recirculation on Exhaust Emissions from Diesel Engines Fuelled with Biodiesel

2007-09-16
2007-24-0128
Application of biodiesel fuel (BDF) to diesel engine is very effective to reduce CO2 emission, because bio-diesel is carbon neutral in principle. However, when biodiesel was applied to conventional diesel engines without modification for biodiesel, NOx emission was increased by the change in fuel characteristics. It is necessary to introduce some strategies into diesel engines fuelled with biodiesel for lower NOx emission than conventional diesel fuel case. The purpose of this study is to reveal that exhaust gas recirculation (EGR) is one of the solutions for the reduction of NOx emission and meeting the future emission regulations when using biodiesel. Neat Rapeseed oil methyl ester (RME) as a biodiesel (B100) was applied to diesel engines equipped with high pressure loop (HPL) EGR system and low pressure loop (LPL) EGR system. Cooled HPL EGR was increased during steady-state operations and JE05 transient mode tests.
Journal Article

BSFC Improvement by Diesel-Rankine Combined Cycle in the High EGR Rate and High Boosted Diesel Engine

2013-04-08
2013-01-1638
In heavy duty diesel engines, waste heat recovery systems are remarkable means for fuel consumption improvement. In this paper, Diesel-Rankine combined cycle which is combined diesel cycle with Rankine cycle is studied to clarify the quantitative potential of fuel consumption improvement with a high EGR rate and high boosted diesel engine. The high EGR rate and high boosted diesel engine of a single cylinder research engine was used and it reaches brake specific fuel consumption (BSFC) of 193.3 g/kWh at full load (BMEP=2.0MPa). And its exhaust temperature reaches 370 C. The exhaust gas temperature does not exceed 400 C in high boosted diesel engine even at full load operating condition because of a high excess air ratio. On the other hand, exhaust gas quantity is larger due to a high boosting.
Technical Paper

Application of Laser Doppler Anemometry to a Motored Diesel Engine

1980-09-01
800965
Some problems associated with applying LDA to the measurement of air motion in the engine’s cylinder are studied experimentally for both the forward and the back scattering technique in a motored diesel engine. The effects of the doppler broadening caused by the velocity gradient and the diameters of the scattering particles are discossed. The decaying process and the structure of the in-cylinder flow field are studied using the measurements of the main flow velocity, the turbulent intensity and macro scales and normalised power spectrum of the turbulence. A comparison measurement is also made between the forward scattering and the back scattering techniques.
Technical Paper

Application of Biodiesel Fuel to Modern Diesel Engine

2006-04-03
2006-01-0233
The 1997 Kyoto protocol came into effect in February, 2005 to reduce greenhouse gases within the period 2008-2012 by at least 5 % with respect to 1990 levels. Application of biodiesel fuel (BDF) to diesel engine is very effective to reduce CO2 emission, because BDF is carbon neutral in principle. The purpose of this project is to produce a light-duty biodiesel truck which can be suitable for emission regulation in next generation. The effect of BDF on the performance and emissions of modern diesel engine which was equipped with the aftertreatment for PM and NOx emissions was investigated without modifications of engine components and parameters, as a first step for research and development of biodiesel engine. Rapeseed oil methyl ester (RME) was selected in behalf of BDF, and combustion characteristics, engine performance and exhaust emissions were made a comparison between RME and petroleum diesel fuel by steady operation and Japan transient mode (JE05) tests.
Technical Paper

A Numerical Study on Correlation of Chemiluminescent Species and Heat Release Distributions Using Large Eddy Simulation

2018-10-30
2018-32-0066
A mixed timescale subgrid model of a large eddy simulation was used to simulate the turbulence regime in diesel engine combustion. The combustion model used the direct integration approach with a diesel oil surrogate mechanism (developed at Chalmers University of Technology and consisting of 70 species and 309 reactions). Additional reactions for the generation and consumption of OH*, CO2*, and CH* species were added from recent kinetic studies. Collisional quenching and spontaneous emission resulted in de-excitation of the excited state radical. A phenomenological soot formation model (developed at Waseda University) was combined with the LES code. The following important steps were considered in the soot model: particle inception where naphthalene grows irreversibly to form soot, surface growth with the addition of C2H2, surface oxidation (induced by OH radicals and O2 attack), and particle coagulation.
Technical Paper

A Gas Sampling Study on the Formation Processes of Soot and NO in a DI Diesel Engine

1980-02-01
800254
The concentrations of soot, NO and the other combustion products were measured by incylinder gas sampling in a DI diesel engine. The effects of injection timing, swirl ratio, and combustion chamber geometry on the formation and emission processes of soot and NO were studied. The following results were obtained: (1) Soot is promptly formed in the flame during the early combustion period where the equivalence ratio in the flame is high over 1.0. Thereafter almost all the formed soot is swiftly burnd up by oxidation during the middle combustion period. This process mainly determines the exhaust soot concentration. (2) NO is formed in the flame during the early and middle combustion period where the flame temperature is high over 2000 K. The highest NO concentration is observed at the flame tip swept by the air swirl. Though the concentration of the formed NO decreases by dilusion it nearly constant during the later combustion period.
X