Refine Your Search

Search Results

Viewing 1 to 15 of 15
Technical Paper

Vehicle and Tire Modeling for DynamicAnalysis and Real-Time Simulation

This paper reviews the development and application of a computer simulation for simulating ground vehicle dynamics including steady state tire behavior. The models have been developed over the last decade, and include treatment of sprung and unsprung masses, suspension characteristics and composite road plane tire forces. The models have been applied to single unit passenger cars, trucks and buses, and articulated tractor/trailer vehicles. The vehicle model uses composite parameters that are relatively easy to measure. The tire model responds to normal load, camber angle and composite tire patch slip, and its longitudinal and lateral forces interact with an equivalent friction ellipse formulation. The tire model can represent behavior on both paved and off-road surfaces. Tire model parameters can be automatically identified given tire force and moment test data.
Technical Paper

Vehicle Stability Considerations with Automatic and Four Wheel Steering Systems

Automatic and four wheel steering control laws are often developed from the performance point of view to optimize rapid response. Under linear tire operating conditions (i.e., maneuvering at less than .5g's) both performance and safety conditions can be simultaneously met. Under severe operating conditions, such as might be encountered during crash avoidance maneuvering, tire characteristics can change dramatically and induce directional dynamic instability and spinout. The challenge in automatic and four wheel steering system design is to achieve a compromise between performance and safety. This paper will describe analyses carried out with a validated vehicle dynamics computer simulation that shed some light on the vehicle and control characteristics that influence tradeoffs between performance and safety. The computer simulation has been validated against field test data from twelve vehicles including passenger cars, vans, pickup trucks and utility vehicles.
Technical Paper

Validation of Ground Vehicle Computer Simulations Developed forDynamics Stability Analysis

This paper describes validation work carried out for two vehicle dynamics computer simulation programs. One program, referred to as VDANL (Vehicle Dynamics Analysis NonLinear), is intended to simulate passenger cars, vans and light trucks. The second program simulates All Terrain Vehicles (ATVs) and is referred to as NLATV (NonLinear ATV). The programs have been checked out and validated for a variety of maneuvering conditions and a broad range of vehicles. The programs run on IBM-PC/MS DOS compatible computers, and numerical methods have been used to give numerically stable solutions with reasonable computational speed over a broad range of maneuvering situations.
Technical Paper

Transient Analysis of All Terrain vehicle Lateral Directional Handling & Stability

All Terrain Vehicles (ATVs) have unique design features, including low pressure tires, a solid rear axle (i.e., no differential), and a relatively high center of gravity compared to wheel track width, that exert significant influence on their lateral/directional handling and stability properties. In addition, rider weight is a reasonable proportion of vehicle weight and weight shift is used as an additional control means in combination with steering, throttle and braking. This paper describes a nonlinear, time domain simulation analysis of the transient lateral/directional response properties of ATVs with rider control. The simulation is derived from earlier automotive applications. A description of the analytic model and computer simulation are given along with validation comparisons of instrumented vehicle field test data and computer simulation runs.
Technical Paper

The Effect of Tire Characteristics on Vehicle Handling and Stability

Handling and stability problems are typically revealed under limit performance maneuvering conditions where tires are pushed to high slip angles under high normal loading conditions. This paper reviews vehicle dynamics handling and stability models relative to tire characteristics and examines tire testing data obtained under normal and extreme maneuvering conditions. Tire data is normalized according to design characteristics in order to reveal basic maneuvering behavior that is relatively independent of size and construction. Computer simulation analysis is used to demonstrate the influence of tire characteristics on handling and stability.
Technical Paper

Steady State and Transient Analysis of Ground Vehicle Handling

This paper presents simple linear and non-linear dynamic models and numerical procedures designed to permit efficient vehicle dynamics analysis on microcomputers. Vehicle dynamics are dominated by tire forces and their precursor input variables, and a few inertial and suspension properties. The steady state and dynamic models discussed herein include a comprehensive, unlimited maneuver tire model with relatively simple vehicle suspension kinematics and inertial dynamics to cover the full vehicle maneuvering range from straight running to combined limit cornering and braking or acceleration. An attempt was made to minimize the required tire and vehicle model parameter set and to include easily obtainable parameters. The computer analysis procedures include: A steady state model for determining perturbation side force coefficients, and a stability factor and maneuvering time constant for lateral/directional control.
Technical Paper

Requirements for Vehicle Dynamics Simulation Models

Computer simulation and real-time, interactive approaches for analysis, interactive driving simulation, and hardware-in-the-loop testing are finding increasing application in the research and development of advanced automotive concepts, highway design, etc. Vehicle dynamics models serve a variety of purposes in simulation. A model must have sufficient complexity for a given application but should not be overly complicated. In interactive driving simulation, vehicle dynamics models must provide appropriate computation for sensory feedback such as visual, motion, auditory, and proprioceptive cuing. In stability and handling simulations, various modes must be properly represented, including lateral/directional and longitudinal degrees of freedom. Limit performance effects of tire saturation that lead to plow out, spin out, and skidding require adequate tire force response models.
Technical Paper

Meeting Important Cuing Requirements with Modest, Real-Time, Interactive Driving Simulations

Interactive simulation requires providing appropriate sensory cuing and stimulus/response dynamics to the driver. Sensory feedback can include visual, auditory, motion, and proprioceptive cues. Stimulus/response dynamics involve reactions of the feedback cuing to driver control inputs including steering, throttle and brakes. The stimulus/response dynamics include both simulated vehicle dynamics, and the response dynamics of the simulation hardware including computer processing delays. Typically, simulation realism will increase with sensory fidelity and stimulus/response dynamics that are equivalent to real-world conditions (i.e. without excessive time delay or phase lag). This paper discusses requirements for sensory cuing and stimulus/response dynamics in real-time, interactive driving simulation, and describes a modest fixed-base (i.e. no motion) device designed with these considerations in mind.
Technical Paper

Low Cost Driving Simulation for Research, Training and Screening Applications

Interactive driving simulation is attractive for a variety of applications, including screening, training and licensing, due to considerations of safety, control and repeatability. However, widespread dissemination of these applications will require modest cost simulator systems. Low cost simulation is possible given the application of PC level technology, which is capable of providing reasonable fidelity in visual, auditory and control feel cuing. This paper describes a PC based simulation with high fidelity vehicle dynamics, which provides an easily programmable visual data base and performance measurement system, and good fidelity auditory and steering torque feel cuing. This simulation has been used in a variety of applications including screening truck drivers for the effects of fatigue, research on real time monitoring for driver drowsiness and measurement of the interference effect of in-vehicle IVHS tasks on driving performance.
Technical Paper

Field Testing and Computer Simulation Analysis of Ground Vehicle Dynamic Stability

This paper considers ground vehicle lateral/directional stability which is of primary concern in traffic safety. Lateral/directional dynamics involve yawing, rolling and lateral acceleration motions, and stability concerns include spinout and rollover. Lateral/directional dynamics are dominated by tire force response which depends on horizontal slip, camber angle and normal load. Vehicle limit maneuvering conditions can lead to tire force responses that result in vehicle spinout and rollover. This paper describes accident analysis, vehicle testing and computer simulation analysis designed to give insight into basic vehicle design variables that contribute to stability problems. Field test procedures and results for three vehicles are described. The field test results are used to validate a simulation model which is then analyzed under severe maneuvering conditions to shed light on dynamic stability issues.
Technical Paper

Estimation of Passenger Vehicle Inertial Properties and Their Effect on Stability and Handling

Vehicle handling and stability are significantly affected by inertial properties including moments of inertia and center of gravity location. This paper will present an analysis of the NHTSA Inertia Database and give regression equations that approximate moments of inertia and center of gravity height given basic vehicle properties including weight, width, length and height. The handling and stability consequences of the relationships of inertial properties with vehicle size will be analyzed in terms of previously published vehicle dynamics models, and through the use of a nonlinear maneuvering simulation.
Technical Paper

Computer Simulation Analysis of Light Vehicle Lateral/Directional Dynamic Stability

Dynamic stability is influenced by vehicle and tire characteristics and operating conditions, including speed and control inputs. Under limit performance operating conditions, maneuvering can force a vehicle into oversteer and high sideslip. The high sideslip results in limit cornering conditions, which might proceed to spinout, or result in tip-up and rollover. Oversteer and spinout result from rear axle tire side force saturation. Tip-up and rollover occur when tire side forces are sufficient to induce lateral acceleration that will overcome the stabilizing moment of vehicle weight. With the use of computer simulation and generic vehicle designs, this paper explores the vehicle and tire characteristics and maneuvering conditions that lead to loss of directional control and potential tip-up and rollover.
Technical Paper

Characteristics Influencing Ground Vehicle Lateral/Directional Dynamic Stability

Lateral/directional dynamics involve vehicle yawing, rolling and lateral translation motions and dynamic stability concerns directional behavior (i.e. spinout) and rollover. Previous research has considered field test and computer simulation methods and results concerning lateral/directional stability. This paper summarizes measurements and simulation analysis of a wide range of vehicles regarding directional and rollover stability. Directional stability is noted to be strongly influenced by lateral load transfer distribution (LTD) between the front and rear axles LTD influences tire side force saturation properties, and should be set up so that side forces at the rear axle do not saturate before the front axle under hard maneuvering conditions in order to avoid limit oversteer and spinout.
Technical Paper

A Vehicle Dynamics Tire Model for Both Pavement and Off-Road Conditions

This paper describes a tire model designed for the full range of operating conditions under both on- and off-road surface conditions. The operating conditions include longitudinal and lateral slip, camber angle and normal load. The model produces tire forces throughout the adhesion range up through peak coefficient of friction, and throughout the saturation region to limit slide coefficient of friction. Beyond the peak coefficient of friction region, the off-road portion of the model simulates plowing of deformable surfaces at large side slip angles which can result in side forces significantly above the normal load (e.g., equivalent coefficients of friction greatly exceeding unity). The model allows changing the saturation function depending the surface currently encountered by a given tire in the vehicle dynamics model.
Technical Paper

A Low Cost PC Based Driving Simulator for Prototyping and Hardware-In-The-Loop Applications

This paper describes a low cost, PC based driving simulation that includes a complete vehicle dynamics model (VDM), photo realistic visual display, torque feedback for steering feel and realistic sound generation. The VDM runs in real-time on Intel based PCs. The model, referred to as VDANL (Vehicle Dynamics Analysis, Non-Linear) has been developed and validated for a range of vehicles over the last decade and has been previously used for computer simulation analysis. The model's lateral and longitudinal dynamics have 17 degrees of freedom for a single unit vehicle and 33 degrees of freedom for an articulated vehicle. The model also includes a complete drive train including engine, transmission and front and rear drive differentials, and complete, power assisted braking and steering systems. A comprehensive tire model (STIREMOD) generates lateral and longitudinal forces and aligning torque based on normal load, camber angle and horizontal (lateral and longitudinal) slip.