Refine Your Search

Topic

Author

Search Results

Journal Article

Tomorrows Diesel Fuel Diversity - Challenges and Solutions

2008-06-23
2008-01-1731
Regulated emissions, CO2-values, comfort, good driveability, high reliability and costs, this is the main frame for all future powertrain developments. In this frame, the diesel powertrain, not only for passenger cars, but also for commercial vehicle applications, faces some challenges in order to fulfil the future European and current US emission legislations while keeping the fuel consumption benefit, good driveability and an acceptable cost frame. One of these challenges is the varying fuel qualities of diesel fuel in different countries including different cetane number, volatility, sulphur content and different molecular composition. In addition to that in the future, more and more alternative fuels with various fuel qualities and properties will be launched into the market for economical and environmental reasons. At present, the control algorithms of the injection system applied in most diesel engines is open loop control.
Technical Paper

Thermodynamical and Mechanical Approach Towards a Variable Valve Train for the Controlled Auto Ignition Combustion Process

2005-04-11
2005-01-0762
Controlled Auto Ignition (CAI) as a promising future combustion process is a concept to strongly reduce fuel consumption as well as NOx emissions. The acceptance and the potential of this combustion process depends on the possible CAI operation range in the engine map and the fuel consumption benefit, as well as the complexity of the variable valve train which is necessary to realize the CAI combustion process. The thermodynamic investigations presented in this paper were done on an engine equipped with an electromechanical valve train (EMVT), featuring Port Fuel Injection (PFI) and direct Injection. They show that the electromechanical valve train is an excellent platform for developing the CAI process. Controlled Auto Ignition has been realized with port fuel injection in a speed range between 1000 and 4500 rpm and in a load range between approximately 1 and 6 bar BMEP (about 5 bar BMEP for pressure gradients lower than 3 bar/°CA) depending on engine speed.
Journal Article

Thermal Shock Protection for Diesel Particulate Filters

2011-12-15
2011-01-2429
During a thermal regeneration of a Diesel particulate filter (DPF) the temperature inside the DPF may raise above critical thresholds in an uncontrolled way (thermal shock). Especially driving conditions with a comparable low exhaust gas mass flow and high oxygen content like idle speed may create a thermal shock. This paper presents a concept for an ECU software structure to prevent the DPF from reaching improper temperatures and the methodology in order to calibrate this ECU structure. The concept deals in general with a closed-loop control of the exhaust gas air-fuel-ratio during the critical engine operation phases. Those critical operation phases are identified at the engine test bench during “Drop-to-Idle” and “Drop-to-Overrun” experiments. The experiments show that those phases are critical having on the one hand a low exhaust gas mass flow and on the other hand a high oxygen percentage in the exhaust gas.
Technical Paper

The Impact of Different Biofuel Components in Diesel Blends on Engine Efficiency and Emission Performance

2010-10-25
2010-01-2119
Within the Cluster of Excellence “Tailor-Made Fuels from Biomass” at RWTH Aachen University, the Institute for Combustion Engines carried out an investigation program to explore the potential of future biofuel components in Diesel blends. In this paper, thermodynamic single cylinder engine results of today's and future biofuel components are presented with respect to their engine-out emissions and engine efficiency. The investigations were divided into two phases: In the first phase, investigations were performed with rapeseed oil methyl ester (B100) and an Ethanol-Gasoline blend (E85). In order to analyze the impact of different fuel blends, mixtures with 10 vol-% of B100 or E85 and 90 vol-% of standardized EN590 Diesel were investigated. Due to the low cetane number of E85, it cannot be used purely in a Diesel engine.
Technical Paper

Tailor-Made Fuels: The Potential of Oxygen Content in Fuels for Advanced Diesel Combustion Systems

2009-11-02
2009-01-2765
Fuels derived from biomass will most likely contain oxygen due to the high amount of hydrogen needed to remove oxygen in the production process. Today, alcohol fuels (e. g. ethanol) are well understood for spark ignition engines. The Institute for Combustion Engines at RWTH Aachen University carried out a fuel investigation program to explore the potential of alcohol fuels as candidates for future compression ignition engines to reduce engine-out emissions while maintaining engine efficiency and an acceptable noise level. The soot formation and oxidation process when using alcohol fuels in diesel engines is not yet sufficiently understood. Depending on the chain length, alcohol fuels vary in cetane number and boiling temperature. Decanol possesses a diesel-like cetane number and a boiling point in the range of the diesel boiling curve. Thus, decanol was selected as an alcohol representative to investigate the influence of the oxygen content of an alcohol on the combustion performance.
Technical Paper

Tailor-Made Fuels from Biomass: Influence of Molecular Structures on the Exhaust Gas Emissions of Compression Ignition Engines

2013-10-07
2013-36-0571
In order to deeply investigate and improve the complete path from biofuel production to combustion, the cluster of excellence “Tailor-Made Fuels from Biomass” was installed at RWTH Aachen University in 2007. Recently, new pathways have been discovered to synthesize octanol [1] and di-n-butylether (DNBE). These molecules are identical in the number of included hydrogen, oxygen and carbon atoms, but differ in the molecular structure: for octanol, the oxygen atom is at the end of the molecule, whereas for DNBE it is located in the middle. In this paper the utilization of octanol and DNBE in a state-of-the-art single cylinder diesel research engine will be discussed. The major interest has been on engine emissions (NOx, PM, HC, CO, noise) compared to conventional diesel fuel.
Technical Paper

Tailor-Made Fuels for Future Advanced Diesel Combustion Engines

2009-06-15
2009-01-1811
The finite nature and instability of fossil fuel supply has led to an increasing and enduring investigation demand of alternative and regenerative fuels. The Institute for Combustion Engines at the RWTH Aachen University carried out an investigation program to explore the potential of tailor made fuels to reduce engine-out emissions while maintaining engine efficiency and an acceptable noise level. To enable optimum engine performance a range of different hydrocarbons having different fuel properties like cetane number, boiling temperature and different molecular compositions have been investigated. Paraffines and naphthenes were selected in order to better understand the effects of molecular composition and chain length on emissions and performance of an engine that was already optimized for advanced combustion performance. The diesel single-cylinder research engine used in this study will be used to meet Euro 6 emissions limits and beyond.
Technical Paper

System Comparison of Hybrid and Fuel Cell Systems to Internal Combustion Engines

2002-10-21
2002-21-0070
Increasing shortages of energy resources as well as emission legislation development is increasing the pressure to develop more efficient, environmentally friendly propulsion systems for vehicles. Alternatives such as fuel cell systems or hybrid propulsion are in discussion or have already been introduced. This paper gives a survey on the present technical status of internal combustion engines, hybrid concepts and current fuel cell vehicles. Different solutions will be presented, so that an evaluation of advantages and drawbacks can be given. The further potentials of each concept, as well as combinations of different systems are discussed, and an outlook into the future is given.
Technical Paper

Scalable Mean Value Modeling for Real-Time Engine Simulations with Improved Consistency and Adaptability

2019-04-02
2019-01-0195
This article discusses highly flexible and accurate physics-based mean value modeling (MVM) for internal combustion engines and its wide applicability towards virtual vehicle calibration. The requirement to fulfill the challenging Real Driving Emissions (RDE) standards has significantly increased the demand for precise engine models, especially models regarding pollutant emissions and fuel economy. This has led to a large increase in effort required for precise engine modeling and robust model calibration. Two best-practice engine modeling approaches will be introduced here to satisfy these requirements. These are the exclusive MVM approach, and a combination of MVM and a Design of Experiments (DOE) model for heterogeneous multi-domain engine systems.
Technical Paper

Prediction of Combustion Delay and -Duration of Homogeneous Charge Gasoline Engines based on In-Cylinder Flow Simulation

2009-06-15
2009-01-1796
In this paper a new approach is presented to evaluate the combustion behaviour of homogeneous gasoline engines by predicting burn delay and -duration in a way which can be obtained under the time constraints of the development process. This is accomplished by means of pure in-cylinder flow simulations without a classical combustion model. The burn delay model is based on the local distribution of the turbulent flow near the spark plug. It features also a methodology to compare different designs regarding combustion stability. The correlation for burn duration uses a turbulent characteristic number that is obtained from the turbulent flow in the combustion chamber together with a model for the turbulent burning velocity. The results show good agreement with the combustion process of the analyzed engines.
Journal Article

Potential of Cellulose-Derived Biofuels for Soot Free Diesel Combustion

2010-04-12
2010-01-0335
Today's biofuels require large amounts of energy in the production process for the conversion from biomass into fuels with conventional properties. To reduce the amounts of energy needed, future fuels derived from biomass will have a molecular structure which is more similar to the respective feedstock. Butyl levulinate can be gained easily from levulinic acid which is produced by acid hydrolysis of cellulose. Thus, the Institute for Combustion Engines at RWTH Aachen University carried out a fuel investigation program to explore the potential of this biofuel compound, as a candidate for future compression ignition engines to reduce engine-out emissions while maintaining engine efficiency and an acceptable noise level. Previous investigations identified most desirable fuel properties like a reduced cetane number, an increased amount of oxygen content and a low boiling temperature for compression ignition engine conditions.
Technical Paper

Performance and Emissions of Lignin and Cellulose Based Oxygenated Fuels in a Compression-Ignition Engine

2015-04-14
2015-01-0910
Lignocellulosic biomass consists of (hemi-) cellulose and lignin. Accordingly, an integrated biorefinery will seek to valorize both streams into higher value fuels and chemicals. To this end, this study evaluated the overall combustion performance of both cellulose- and lignin derivatives, namely the high cetane number (CN) di-n-butyl ether (DnBE) and low CN anisole, respectively. Said compounds were blended both separately and together with EN590 diesel. Experiments were conducted in a single cylinder compression ignition engine, which has been optimized for improved combustion characteristics with respect to low emission levels and at the same time high fuel efficiency. The selected operating conditions have been adopted from previous “Tailor-Made Fuels from Biomass (TMFB)” work.
Technical Paper

Optimized Layout of Gasoline Engines for Hybrid Powertrains

2008-01-09
2008-28-0024
Due to the complex powertrain layout in hybrid vehicles, different configurations concerning internal combustion engine, electric motor and transmission can be combined - as is demonstrated by currently produced hybrid vehicles ([1], [2]). At the Institute for Combustion Engines (VKA) at RWTH Aachen University a combination of simulation, Design of Experiments (DoE) and numerical optimization methods was used to optimize the combustion engine, the powertrain configuration and the operation strategy in hybrid powertrains. A parametric description allows a variation of the main hybrid parameters. Parallel as well as power-split hybrid powertrain configurations were optimized with regard to minimum fuel consumption in the New European Driving Cycle (NEDC). Besides the definition of the optimum configuration for engine, powertrain and operation strategy this approach offers the possibility to predict the fuel consumption for any modifications of the hybrid powertrains.
Journal Article

Optimization of Electrified Powertrains for City Cars

2012-06-01
2011-01-2451
Sustainable and energy-efficient consumption is a main concern in contemporary society. Driven by more stringent international requirements, automobile manufacturers have shifted the focus of development into new technologies such as Hybrid Electric Vehicles (HEVs). These powertrains offer significant improvements in the efficiency of the propulsion system compared to conventional vehicles, but they also lead to higher complexities in the design process and in the control strategy. In order to obtain an optimum powertrain configuration, each component has to be laid out considering the best powertrain efficiency. With such a perspective, a simulation study was performed for the purpose of minimizing well-to-wheel CO2 emissions of a city car through electrification. Three different innovative systems, a Series Hybrid Electric Vehicle (SHEV), a Mixed Hybrid Electric Vehicle (MHEV) and a Battery Electric Vehicle (BEV) were compared to a conventional one.
Journal Article

Optimization of Diesel Combustion and Emissions with Tailor-Made Fuels from Biomass

2013-09-08
2013-24-0059
In order to thoroughly investigate and improve the path from biofuel production to combustion, the Cluster of Excellence “Tailor-Made Fuels from Biomass” was installed at RWTH Aachen University in 2007. Since then, a variety of fuel candidates have been investigated. In particular, 2-methyl tetrahydrofurane (2-MTHF) has shown excellent performance w.r.t. the particulate (PM) / NOx trade-off [1]. Unfortunately, the long ignition delay results in increased HC-, CO- and noise emissions. To overcome this problem, the addition of di-n-butylether (DNBE, CN ∼ 100) to 2-MTHF was analyzed. By blending these two in different volumetric shares, the effects of the different mixture formation and combustion characteristics, especially on the HC-, CO- and noise emissions, have been carefully analyzed. In addition, the overall emission performance has been compared to EN590 diesel.
Technical Paper

Optimization of Diesel Combustion and Emissions with Newly Derived Biogenic Alcohols

2013-10-14
2013-01-2690
Modern biofuels offer the potential to decrease engine out emissions while at the same time contributing to a reduction of greenhouse gases produced from individual mobility. In order to deeply investigate and improve the complete path from biofuel production to combustion, in 2007 the cluster of excellence “Tailor-Made Fuels from Biomass” was installed at RWTH Aachen University. Since then, a whole variety of possible fuel candidates have been identified and investigated. In particular oxygenated fuels (e.g. alcohols, furans) have proven to be beneficial regarding the particulate matter (PM)/ NOx trade-off [1, 2, 3] in diesel-type combustion. Alcohols that provide a longer ignition delay than diesel might behave even better with regard to this trade-off due to higher homogenization of the mixture. Recent studies carried out within the Cluster of Excellence have discovered new pathways to derive 1-octanol from biomass [4], which features a derived cetane number (DCN) of 39.
Journal Article

Optical and Thermodynamic Investigations of Reference Fuels for Future Combustion Systems

2010-10-25
2010-01-2193
The finite nature and instability of fossil fuel supply has led to an increasing and enduring investigation demand of alternative and regenerative fuels. An investigation program is carried out to explore the potential of tailor made fuels to reduce engine-out emissions while maintaining engine efficiency and an acceptable noise level. In this paper, fundamental results of the Diesel engine relevant combustion are presented. To enable optimum engine performance a range of different reference fuels have been investigated. The fundamental effects of different physical and chemical properties on emission formation and engine performance are investigated using a thermodynamic diesel single cylinder research engine and an optically-accessible combustion vessel. Depending on the chain length and molecular structure, fuel compounds vary in cetane number, boiling temperature etc. Therefore, different hydrocarbons including n-heptane, n-dodecane, and l-decanol were investigated.
Technical Paper

Objectified Drivability Evaluation and Classification of Passenger Vehicles in Automated Longitudinal Vehicle Drive Maneuvers with Engine Load Changes

2019-04-02
2019-01-1286
To achieve global market and brand specific drivability characteristics as unique selling proposition for the increasing number of passenger car derivatives, an objectified evaluation approach for the drivability capabilities of the various cars is required. Thereto, it is necessary to evaluate the influence of different engine concepts in various complex and interlinked powertrain topologies during engine load change maneuvers based on physical criteria. Such an objectification approach enables frontloading of drivability related engineering tasks by the execution of drivability development and calibration work within vehicle subcomponent-specific closed-loop real-time co-simulation environments in early phases of a vehicle development program. So far, drivability functionalities could be developed and calibrated only towards the end of a vehicle development program, when test vehicles with a sufficient level of product maturity became available.
Journal Article

Nitric Oxide Measurements in the Core of Diesel Jets Using a Biofuel Blend

2015-04-14
2015-01-0597
Maintaining low NOx emissions over the operating range of diesel engines continues to be a major issue. However, optical measurements of nitric oxide (NO) are lacking particularly in the core of diesel jets, i.e. in the region of premixed combustion close to the spray axis. This is basically caused by severe attenuation of both the laser light and fluorescent emission in laser-induced fluorescence (LIF) applications. Light extinction is reduced by keeping absorption path lengths relatively short in this work, by investigating diesel jets in a combustion vessel instead of an engine. Furthermore, the NO-detection threshold is improved by conducting 1-d line measurements instead of 2-d imaging. The NO-LIF data are corrected for light attenuation by combined LIF and spontaneous Raman scattering. The quantified maximum light attenuation is significantly lower than in comparable previous works, and its wavelength dependence is surprisingly weak.
Technical Paper

Modeling of Transport and Mixing Phenomena in Turbulent Flows in Closed Domains

2015-04-14
2015-01-0399
In this work, a transport and mixing model that calculates mixing in thermodynamic phase space was derived and validated. The mixing in thermodynamic multizone space is consistent to the one in the spatially resolved physical space. The model is developed using a turbulent channel flow as simplified domain. This physical domain of a direct numerical simulation (DNS) is divided into zones based on the quantitative value of transported scalars. Fluxes between the zones are introduced to describe mixing from the transport equation of the probability density function based on the mixing process in physical space. The mixing process of further scalars can then be carried out with these fluxes instead of solving additional transport equations. The relationship between the exchange flux in phase space and the concept of scalar dissipation are shown and validated by comparison to DNS results.
X