Refine Your Search


Search Results

Technical Paper

Vegetable Oils as Alternative Diesel Fuels: Degradation of Pure Triglycerides During the Precombustion Phase in a Reactor Simulating a Diesel Engine

Vegetable oils are candidates for alternative fuels in diesel engines. These oils, such as soybean, sunflower, rapeseed, cottonseed, and peanut, consist of various triglycerides. The chemistry of the degradation of vegetable oils when used as alternate diesel fuels thus corresponds to that of triglycerides. To study the chemistry occurring during the precombustion phase of a vegetable oil injected into a diesel engine, a reactor simulating a diesel engine was constructed. Pure triglycerides were injected into the reactor in order to determine differences in the precombustion behavior of the various triglycerides. The reactor allowed motion pictures to be prepared of the injection event as the important reaction parameters, such as pressure, temperature, and atmosphere were varied. Furthermore, samples of the degradation products of precombusted triglycerides were collected and analyzed (gas chromatography / mass spectrometry).
Technical Paper

The Use of Hybrid Fuel in a Single-Cylinder Diesel Engine

Hybrids are fuels derived from combinations of different energy sources and which are generally formulated as solutions, emulsions, or slurries. The underlying objective of this program is to reduce the use of petroleum-derived fuels and/or to minimize the processing requirements of the finished hybrid fuels. Several hybrid fuel formulations have been developed and tested in a direct injection single-cylinder diesel engine. The formulations included solutions of ethanol and vegetable oils in diesel fuel, emulsions of methanol and of ethanol in diesel fuel; and slurries of starch, cellulose, and “carbon” in diesel fuel. Based on the progress to date, the solutions and emulsions appear to be viable diesel engine fuels if the economic factors are favorable and the storage and handling problems are not too severe. The slurries, on the other hand, are not to the same point of development as the solutions and emulsions.
Technical Paper

The Heavy Duty Gasoline Engine - A Multi-Cylinder Study of a High Efficiency, Low Emission Technology

SwRI has developed a new technology concept involving the use of high EGR rates coupled with a high-energy ignition system in a gasoline engine to improve fuel economy and emissions. Based on a single-cylinder study [1], this study extends the concept of a high compression ratio gasoline engine with EGR rates > 30% and a high-energy ignition system to a multi-cylinder engine. A 2000 MY Isuzu Duramax 6.6 L 8-cylinder engine was converted to run on gasoline with a diesel pilot ignition system. The engine was run at two compression ratios, 17.5:1 and 12.5:1 and with two different EGR systems - a low-pressure loop and a high pressure loop. A high cetane number (CN) diesel fuel (CN=76) was used as the ignition source and two different octane number (ON) gasolines were investigated - a pump grade 91 ON ((R+M)/2) and a 103 ON ((R+M)/2) racing fuel.
Technical Paper

The Effects of Fuel Properties on Emissions from a 2.5gm NOx Heavy-Duty Diesel Engine

The engine selected for this work was a Caterpillar 3176 engine. Engine exhaust emissions, performance, and heat release rates were measured as functions of engine configuration, engine speed and load. Two engine configurations were used, a standard 1994 design and a 1994 configuration with EGR designed to achieve a NOx emissions level of 2.5 gm/hp-hr. Measurements were performed at 7 different steady-state, speed-load conditions on thirteen different test fuels. The fuel matrix was statistically designed to independently examine the effects of the targeted fuel properties. Cetane number was varied from 40 to 55, using both natural cetane number and cetane percent improver additives. Aromatic content ranged from 10 to 30 percent in two different forms, one in which the aromatics were predominantly mono-aromatic species and the other, where a significant fraction of the aromatics were either di- or tri-aromatics.
Technical Paper

The Effects of Fuel Properties and Composition on Diesel Engine Exhaust Emissions - A Review

Due to the cost and mobility advantages of diesel-powered mine vehicles over electric vehicles, it is anticipated that the diesel engine will become more widely used in underground mines in this country. Concern has arisen, however, over the impact of diesel exhaust emissions on the air quality in the underground mine environment. A literature search has been conducted to identify known effects of fuel properties on the reduction of diesel exhaust emissions. Reductions can be obtained by optimizing fuel properties and by considering alternative fuels to standard diesel fuel. However, the data base is relatively small and the results highly dependent on engine type and operating conditions. Engine studies on a typical mine diesel are necessary to draw quantitative conclusions regarding the reduction of emissions, especially particulates and NO2 which have not been generally addressed in previous studies.
Technical Paper

Relationships Between Fuel Properties and Composition and Diesel Engine Combustion Performance and Emissions

Five different diesel fuel feedstocks were processed to two levels of aromatic (0.05 sulfur, and then 10 percent) content. These materials were distilled into 6 to 8 narrow boiling range fractions that were each characterized in terms of the properties and composition. The fractions were also tested at five different speed load conditions in a single cylinder engine where high speed combustion data and emissions measurements were obtained. Linear regression analysis was used to develop relationships between the properties and composition, and the combustion and emissions characteristics as determined in the engine. The results are presented in the form of the regression equations and discussed in terms of the relative importance of the various properties in controlling the combustion and emissions characteristics. The results of these analysis confirm the importance of aromatic content on the cetane number, the smoke and the NOx emissions.
Technical Paper

Partial Pre-Mixed Combustion with Cooled and Uncooled EGR in a Heavy-Duty Diesel Engine

An experimental investigation of the effects of partial premixed charge compression ignition (PCCI) combustion and EGR temperature was conducted on a Caterpillar C-12 heavy-duty diesel engine (HDDE). The addition of EGR and PCCI combustion resulted in significant NOx reductions over the AVL 8-mode test. The lowest weighted BSNOx achieved was 2.55 g/kW-hr (1.90 g/hp-hr) using cooled EGR and 20% port fuel injection (PFI). This represents a 54% reduction compared to the stock engine. BSHC and BSCO emissions increased by a factor of 8 and 10, respectively, compared to the stock engine. BSFC also increased by 7.7%. In general, BSHC, BSCO, BSPM, and BSFC increased linearly with the amount of port-injected fuel.
Technical Paper

On-Board Fuel Property Classifier for Fuel Property Adaptive Engine Control System

This paper explores the possibility of on-board fuel classification for fuel property adaptive compression-ignition engine control system. The fuel classifier is designed to on-board classify the fuel that a diesel engine is running, including alternative and renewable fuels such as bio-diesel. Based on this classification, the key fuel properties are provided to the engine control system for optimal control of in-cylinder combustion and exhaust treatment system management with respect to the fuel. The fuel classifier employs engine input-output response characteristics measured from standard engine sensors to classify the fuel. For proof-of-concept purposes, engine input-output responses were measured for three different fuels at three different engine operating conditions. Two neural-network-based fuel classifiers were developed for different classification scenarios. Of the three engine operating conditions tested, two conditions were selected for the fuel classifier to be active.
Technical Paper

Nox Control in Heavy-Duty Diesel Engines - What is the Limit?

Methods to reduce direct injected diesel engine emissions in the combustion chamber will be discussed in this paper. The following NOx emission reduction technologies will be reviewed: charge air chilling, water injection, and exhaust gas recirculation (EGR). Emphasis will be placed on the development of an EGR system and the effect of EGR on NOx and particulates. The lower limit of NOx that can be obtained using conventional diesel engine combustion will be discussed. Further reductions in NOx may require changing the combustion process from a diffusion flame to a homogeneous charge combustion system.
Technical Paper

Investigation of Diesel Spray Structure and Spray/Wall Interactions in a Constant Volume Pressure Vessel

High-speed movie films, and laser-diffraction drop sizing were used to evaluate the structure, penetration rate, cone angle, and drop size distribution of diesel sprays in a constant volume pressure vessel. As further means of evaluating the data, comparisons are made between the film measurements, and calculations from a dense gas jet model. In addition to the high-speed film data that describes the overall structure of the spray as a function of time, a laser diffraction instrument was used to measure drop size distribution through a cross-section of the spray. In terms of the growth of the total spray volume (a rough measure of the amount of air entrained in the spray), spray impingement causes an initial delay, but generally the same overall growth rate as an equivalent unimpeded spray. Agreement between measurements and calculations is excellent for a diesel spray with a 0.15 mm D orifice and relatively high injection pressures.
Technical Paper

Injection Pressure and Intake Air Density Effects on Ignition and Combustion in a 4-Valve Diesel Engine

Diesel engine optimization for low emissions and high efficiency involves the use of very high injection pressures. It was generally thought that increased injection pressures lead to improved fuel air mixing due to increased atomization in the fuel jet. Injection experiments in a high-pressure, high-temperature flow reactor indicated, however, that high injection pressures, in excess of 150 MPa, leads to greatly increased penetration rates and significant wall impingement. An endoscope system was used to obtain movies of combustion in a modern, 4-valve, heavy-duty diesel engine. Movies were obtained at different speeds, loads, injection pressures, and intake air pressures. The movies indicated that high injection pressure, coupled with high intake air density leads to very short ignition delay times, ignition close to the nozzle, and burning of the plumes as they traverse the combustion chamber.
Technical Paper

Ignition Delay as Determined in a Variable-Compression Ratio Direct-Injection Diesel Engine

A variable-compression ratio, direct-injection diesel engine (VCR) has been designed and assembled at Southwest Research Institute with the intention of examining the current procedures for rating the ignition quality of diesel fuels and the meaning of ignition delay as an indicator of ignition and combustion quality. Using a slightly modified ASTM D 613 procedure, the engine has been used to rate the ignition quality of 43 different test fuels. The ratings obtained in the VCR engine are compared to the corresponding rating obtained using the standard cetane rating procedure. Some of the problems associated with the standard procedure became apparent during these experiments. The experimental results are discussed in terms of the problems and the advantages of a proposed VCR-based rating procedure.
Technical Paper

Identification of Chemical Changes Occurring During the Transient Injection of Selected Vegetable Oils

Four different vegetable oils, degummed soybean, once refined cottonseed, peanut and sunflower oils, were injected into a high-pressure, high-temperature environment of nitrogen. The environment was controlled to resemble, thermodynamically, conditions present in a diesel engine at the time of fuel injection. Samples were removed from the sprays of these oils while they were being injected. A sonic, water-cooled probe and a cold trap were used to collect the samples. Chemical analyses of the samples indicated that significant chemical changes occur in the oils during the injection process. The major change is the formation of low-molecular weight compounds from the C18:2 and C18:3 fatty acids.
Technical Paper

Homogeneous Charge Compression Ignition of Diesel Fuel

A single-cylinder, direct-injection diesel engine was modified to operate on compression ignition of homogenous mixtures of diesel fuel and air. Previous work has indicated that extremely low emissions and high efficiencies are possible if ignition of homogeneous fuel-air mixtures is accomplished. The limitations of this approach were reported to be misfire and knock. These same observations were verified in the current work. The variables examined in this study included air-fuel ratio, compression ratio, fresh intake air temperature, exhaust gas recirculation rate, and intake mixture temperatures. The results suggested that controlled homogeneous charge compression ignition (HCCI) is possible. Compression ratio, EGR rate, and air fuel ratio are the practical controlling factors in achieving satisfactory operation. It was found that satisfactory power settings are possible with high EGR rates and stoichiometric fuel-air mixtures.
Technical Paper

Heavy-Duty Diesel Engine Emissions Tests Using Special Biodiesel Fuels

A 2003 heavy-duty diesel engine (2002 emissions level) was used to test a representative biodiesel fuel as well as the methyl esters of several different fatty acids. The fuel variables included degree of saturation, the oxygen content, and carbon chain length. In addition, two pure normal paraffins with the corresponding chain lengths of two of the methyl esters were also tested to determine the impact of chain length. The dependent variables were the NOx and the particulate emissions (PM). The results indicated that the primary fuel variable affecting the emissions is the oxygen content. The emissions results showed that the highest oxygen content test fuel had the lowest emissions of both NOx and PM. As compared to the baseline diesel fuel the NOx emissions were reduced by 5 percent and the PM emissions were reduced by 83 percent.
Technical Paper

Fuel Effects on Combustion in a Two-Stroke Diesel Engine

Combustion studies on various potential alternative fuels were performed for the U.S. Array Belvoir Research and Development Center in a two-stroke heavy duty diesel engine. One cylinder of the engine was instrumented with a pressure transducer. A high-speed data acquisition system was used to acquire cylinder pressure histories synchronously with crankangle. The heat release diagrams, along with the calculated combustion efficiencies of the fuels were compared to a referee grade diesel fuel. The calculated and measured combustion parameters include heat release centroids, cumulative heat release, peak pressure, indicated horsepower, peak rate of pressure rise, indicated thermal efficiency, energy input, and ignition delay. Regression analyses were performed between various fuel properties and the calculated and measured combustion performance parameters. The fuel properties included specific gravity, cetane number, viscosity, boiling point distribution.
Technical Paper

Engine and Constant Volume Bomb Studies of Diesel ignition and Combustion

Changing fuel quality, increasingly stringent exhaust emission standards, demands for higher efficiency, and the trend towards higher specific output, all contribute to the need for a better understanding of the ignition process in diesel engines. In addition to the impact on the combustion process and the resulting performance and emissions, the ignition process controls the startability of the engine, which, in turn, governs the required compressions ratio and several of the other engine design parameters. The importance of the ignition process is reflected in the fact that the only combustion property that is specified for diesel fuel is the ignition delay time as indicated by the cetane number. The objective of the work described in this paper was to determine the relationship between the ignition process as it occurs in an actual engine, to ignition in a constant volume combustion bomb.
Technical Paper

Effects of Water-Fuel Emulsions on Spray and Combustion Processes in a Heavy-Duty DI Diesel Engine

Significant reductions of particulate matter (PM) and nitrogen oxides (NOx) emissions from diesel engines have been realized through fueling with water-fuel emulsions. However, the physical and chemical in-cylinder mechanisms that affect these pollutant reductions are not well understood. To address this issue, laser-based and chemiluminescence imaging experiments were performed in an optically-accessible, heavy-duty diesel engine using both a standard diesel fuel (D2) and an emulsion of 20% water, by mass (W20). A laser-based Mie-scatter diagnostic was used to measure the liquid-phase fuel penetration and showed 40-70% greater maximum liquid lengths with W20 at the operating conditions tested. At some conditions with low charge temperature or density, the liquid phase fuel may impinge directly on in-cylinder surfaces, leading to increased PM, HC, and CO emissions because of poor mixing.
Technical Paper

Effects of PuriNOx™ Water-Diesel Fuel Emulsions on Emissions and Fuel Economy in a Heavy-Duty Diesel Engine

The engine-out emissions and fuel consumption rates for a modern, heavy-duty diesel engine were compared when fueling with a conventional diesel fuel and three water-blend-fuel emulsions. Four different fuels were studied: (1) a conventional diesel fuel, (2) PuriNOx,™ a water-fuel emulsion using the same conventional diesel fuel, but having 20% water by mass, and (3,4) two other formulations of the PuriNOx™ fuel that contained proprietary chemical additives intended to improve combustion efficiency and emissions characteristics. The emissions data were acquired with three different injection-timing strategies using the AVL 8-Mode steady-state test method in a Caterpillar 3176 engine, which had a calibration that met the 1998 nitrogen oxides (NOX) emissions standard.
Technical Paper

Effects of Fuel Properties and Composition on the Temperature Dependent Autoignition of Diesel Fuel Fractions

The work described in this paper includes the preparation and combustion testing of fuels that consist of fractions of several different distillate materials that represent different feed stocks and different processing technology. Each of the fuels have been tested in a constant volume combustion apparatus to determine the relationship between ignition delay time, temperature and cetane number. These relationships are discussed in terms of the composition and properties of each fraction, and the processing that each of the feedstocks were exposed to.