Refine Your Search

Search Results

Viewing 1 to 14 of 14
Journal Article

Vehicular Emissions in Review

2012-04-16
2012-01-0368
This review paper summarizes major developments in vehicular emissions regulations and technologies (light-duty, heavy-duty, gasoline, diesel) in 2011. First, the paper covers the key regulatory developments in the field, including proposed criteria pollutant tightening in California; and in Europe, the newly proposed PN (particle number) regulation for direct injection gasoline engines, test cycle development, and in-use testing discussions. The proposed US LD (light-duty) greenhouse gas (GHG) regulation for 2017-25 is reviewed, as well as the finalized, first-ever, US HD (heavy-duty) GHG rule for 2014-17. The paper then gives a brief, high-level overview of key emissions developments in LD and HD engine technology, covering both gasoline and diesel. Emissions challenges include lean NOx remediation for diesel and lean-burn gasoline to meet both the emerging NOx and GHG regulations.
Journal Article

Review of Vehicular Emissions Trends

2015-04-14
2015-01-0993
This review paper summarizes major developments in vehicular emissions regulations and technologies from 2014. The paper starts with the key regulatory advancements in the field, including newly proposed Non-Road Mobile Machinery regulations for 2019-20 in Europe, and the continuing developments towards real driving emissions (RDE) standards. An expert panel in India proposed a roadmap through 2025 for clean fuels and tailpipe regulations. LD (light duty) and HD (heavy-duty) engine technology continues showing marked improvements in engine efficiency. Key developments are summarized for gasoline and diesel engines to meet both the emerging NOx and GHG regulations. HD engines are demonstrating more than 50% brake thermal efficiency using methods that can reasonably be commercialized. Next, NOx control technologies are summarized, including SCR (selective catalytic reduction), lean NOx traps, and combination systems. Emphasis is on durability and control.
Journal Article

Review of Diesel Emissions and Control

2010-04-12
2010-01-0301
This review summarizes the latest developments in diesel emissions regarding regulations, engines, NOx (nitrogen oxides) control, particulate matter (PM) reductions, and hydrocarbon (HC) and CO oxidation. Regulations are advancing with proposals for PN (particle number) regulations that require diesel particulate filters (DPFs) for Euro VI in 2013-14, and SULEV (super ultra low emission vehicle) fleet average light-duty (LD) emissions likely to be proposed in California for ~2017. CO₂ regulations will also impact diesel engines and emissions, probably long into the future. Engine technology is addressing these needs. Heavy-duty (HD) research engines show 90% lower NOx at the same PM or fuel consumption levels as a reference 2007 production engine. Work is starting on HD gasoline engines with promising results. In light duty (LD), engine downsizing is progressing and deNOx is emerging as a fuel savings strategy.
Book

Diesel Particulate Filter Technology

2007-03-28
Until recently, the complexity of the Diesel Particulate Filter (DPF) system has hindered its commercial success. Stringent regulations of diesel emissions has lead to advancements in this technology, therefore mainstreaming the use of DPFs in light- and heavy-duty diesel filtration applications. This book covers the latest and most important research in DPF systems, focusing mainly on the advancements of the years 2002-2006. Editor Timothy V. Johnson selected the top 29 SAE papers covering the most significant research in this technology.
Journal Article

Diesel Emissions in Review

2011-04-12
2011-01-0304
This review summarizes the latest developments in diesel emissions regarding regulations, engines, NOx (nitrogen oxides) control, particulate matter (PM) reductions, and hydrocarbon (HC) and CO oxidation. Regulations are advancing with proposals for 70% tightening of fleet average light-duty (LD) criteria emissions likely to be proposed in California for ~2016-22. CO₂ regulations in both the heavy- and light-duty sectors will also tighten and impact diesel engines and emissions, probably long into the future. Engine technology is addressing these needs. Light-duty diesel engines are making incremental gains with combustion enhancements that allow downsizing for CO₂ savings. Heavy-duty (HD) engine show trade-offs between hardware recipes, exhaust deNOx control, and fuel consumption.
Technical Paper

Diesel Emission Control: 2001 in Review

2002-03-04
2002-01-0285
The paper covers reported developments from all major conferences in the year 2001 that occurred in the US and Europe and gives a comprehensive overview of the current state-of-the-art in diesel emission control. The latest developments on nature of diesel particulates are summarized. The variety of diesel particulate filter regeneration strategies that will become so important to filter application are reviewed. Filter retrofit and durability issues are addressed. DeNOx catalysts, SCR, NOx traps for diesel, and non-thermal plasma methods are summarized. Integrated NOx/PM systems are described. NOx efficiency and fuel penalty costs for various NOx systems are summarized, as are the published capital costs of some key systems.
Technical Paper

Diesel Emission Control in Review – The Last 12 Months

2003-03-03
2003-01-0039
Driven mainly by tightening of regulations, advance diesel emission control technologies are rapidly advancing. This paper will review the field with the intent of highlighting representative studies that illustrate the state-of-the-art. First, the author makes estimates of the emission control efficiency targets for heavy and light duty applications. Given the emerging significance of ultrafines to health, and to emission control technologies, an overview of the significant developments in ultrafine particulate science is provided, followed by an assessment of filter technology. Major deNOx catalyst developments, in addition to SCR and LNT progress is described. Finally, system integration examples are provided. In general, progress is impressive and studies have demonstrated that high-efficiency systems are within reach in all sectors highway vehicle sectors. Engines are making impressive gains, and will increase the options for emission control.
Journal Article

Diesel Emission Control in Review

2009-04-20
2009-01-0121
This summary covers representative developments from 2008 in diesel regulations, engine technology, and NOx, particulate matter (PM), and hydrocarbon (HC) control. Europe is finalizing the Euro VI heavy-duty (HD) regulations for 2013 with the intent of technologically harmonizing with the US. A new particle number standard will be adopted. California is considering tightening the light-duty fleet average to US Tier 2 Bin 2 levels, and CO2 mandates are emerging in Europe for LD, and in the US for all vehicles. LD engine technology is focused on downsizing to deliver lower CO2 emissions, enabled by advances in boost and EGR (exhaust gas recirculation). Emerging concepts are shown for attaining Bin 2 emission levels. HD engines will make deNOx systems optional for even the tightest NOx standards, but deNOx systems enable much lower fuel consumption levels and will likely be used. NOx control is centered on SCR (selective catalytic reduction) for diverse applications.
Journal Article

Diesel Emission Control in Review

2008-04-14
2008-01-0069
This summary covers the developments from 2007 in diesel regulations, engine technology, and NOx and PM control. Regulatory developments are now focused on Europe, where heavy-duty regulations have been proposed for 2013. The regulations are similar in technology needs to US2010. Also, the European Commission proposed the first CO2 emission limits of 130 g/km, which are nearly at parity to the Japanese fuel economy standards. Engines are making very impressive progress, with clean combustion strategies in active development mainly for US light-duty application. Heavy-duty research engines are more focused on traditional approaches, and will provide numerous engine/aftertreatment options for hitting the tight US 2010 regulations. NOx control is centered on SCR (selective catalytic reduction) for diverse applications. Focus is on cold operation and system optimization. LNT (lean NOx traps) durability is quantified, and performance enhanced with a sulfur trap.
Technical Paper

Diesel Emission Control in Review

2007-04-16
2007-01-0233
This summary covers the developments from 2006 in diesel regulations, engine combustion, and NOx and PM remediation. Regulatory developments are now focused on Europe, where light-duty Euro 5 and 6 regulations have been proposed for 2009 and 2014, respectively. The regulations are lass stringent than those in the US, but options exist for adopting European vehicles for the US market. Europe is just beginning to look at heavy-duty regulations for 2012 and beyond. Engines are making very impressive progress, with clean combustion strategies in active development mainly for US light-duty application. Heavy-duty research engines are more focused on traditional approaches, and will provide numerous engine/aftertreatment options for hitting the tight US 2010 regulations. NOx control is focusing on SCR (selective catalytic reduction) for diverse applications. Focus is on cold operation, durability, secondary emissions, and system optimization.
Technical Paper

Diesel Emission Control in Review

2001-03-05
2001-01-0184
This paper gives a comprehensive overview of the current state-of-the-art in diesel emission control. The nature of diesel particulates is summarized. The variety of diesel particulate filter regeneration strategies that will become so important to filter application are reviewed. Filter retrofit and durability issues are addressed. DeNOx catalysts, SCR, NOx traps for diesel, and non-thermal plasma methods are summarized. Integrated NOx/PM systems are described. And reduction of exhaust toxics is discussed. The paper covers all major conferences in the year 2000 that occurred in the US and Europe. US and Europe.
Technical Paper

Diesel Emission Control in Review

2006-04-03
2006-01-0030
The paper summarizes the key developments in diesel emission control, generally for 2005. Regulatory targets for the next 10 years and projected advancements in engine technology are used to estimate future emission control needs. Recent NOx control developments on selective catalytic reduction (SCR), lean NOx traps (LNT) and lean NOx catalysts (LNC) are then summarized. Likewise, the paper covers important recent developments on diesel particulate filters (DPFs), summarizing regeneration strategies, new filter and catalyst materials, ash management, and PM measurement. Recent developments in diesel oxidation catalysts are also briefly summarized. Finally, the paper discusses examples of how it is all pulled together to meet the tightest future regulations.
Technical Paper

Diesel Emission Control Technology 2003 in Review

2004-03-08
2004-01-0070
This paper will review the field of diesel emission control with the intent of highlighting representative studies that illustrate the state-of-the-art. First, the author reviews general technology approaches for heavy and light duty applications. Given the emerging significance of ultrafines to health, and to emission control technologies, an overview of the significant developments in ultrafine particulate science is provided, followed by an assessment of filter technology. Regarding NOx control, SCR (selective catalytic reduction) and LNT (lean NOx traps) progress is described. Finally, system integration examples are provided. In general, progress is impressive and studies demonstrate that high-efficiency systems are within reach in all highway vehicle sectors. Engines are making impressive gains, and will increase the options for emission control.
Technical Paper

Diesel Emission Control - Last 12 Months in Review

2000-10-16
2000-01-2817
The key diesel emission control papers of the last 12 months have been summarized. In addition, the emerging US and European light-duty and heavy-duty tailpipe regulations are compared. Results are reported on light-duty diesel filtration regeneration systems and experiences, including effects of ash build-up and some recent modeling work. On the heavy-duty side, optimization of SCR catalysts and systems are described, as well as experiences with the first integrated SCR/filter systems, which are already achieving “Euro V” 2008 standards. An update on NOx adsorbers is also provided. The results with new NOx formulations are described, as well as the system performance in a light-duty diesel application.
X