Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Use of Ceramic Components in Sliding Systems for High-Pressure Gasoline Fuel Injection Pumps

2010-04-12
2010-01-0600
Spray-guided gasoline direct injection demonstrates great potential to reduce both fuel consumption and pollutant emissions. However, conventional materials used in high-pressure pumps wear severely under fuel injection pressures above 20 MPa as the lubricity and viscosity of gasoline are very low. The use of ceramic components promises to overcome these difficulties and to exploit the full benefits of spray-guided GDI-engines. As part of the Collaborative Research Centre “High performance sliding and friction systems based on advanced ceramics” at Karlsruhe Institute of Technology, a single-piston high-pressure gasoline pump operating at up to 50 MPa has been designed. It consists of 2 fuel-lubricated sliding systems (piston/cylinder and cam/sliding shoe) that are built with ceramic parts. The pump is equipped with force, pressure and temperature sensors in order to assess the behaviour of several material pairs.
Technical Paper

The BPI Flame Jet Concept to Improve the Inflammation of Lean Burn Mixtures in Spark Ignited Engines

2004-03-08
2004-01-0035
Spark ignited engines with direct injection (DISI) in fuel stratified mode promise an increase in efficiency mainly due to reduced pumping losses at part load. However, the need for expensive lean NOx catalysts may reduce this advantage. Therefore, a Bowl-Prechamber-Ignition (BPI) concept with flame jet ignition was developed to ignite premixed lean mixtures in DISI engines. It is characterised by a combination of a prechamber spark plug and a piston bowl. An important feature of the concept is its dual injection strategy. A pre injection in the inlet stroke produces a homogeneous lean mixture with an air fuel ratio of λ = 1.5 to λ = 1.7. A second injection with a small quantity of fuel is directed towards the piston bowl during the compression stroke. The enriched air fuel mixture of the piston bowl is transported by the pressure difference between main combustion chamber and prechamber into the prechamber.
Technical Paper

Temperature Measurement and NO Determination in SI Engines Using Optical Fiber Sensors

1996-10-01
961922
This paper presents a special optical fiber technique which allows to measure temperatures in SI engines using the emission bands or respectively emission lines of the temperature radiation of diatomic molecules. The measurement technique enables the detection of average temperature in a small volume element. These temperatures are used to determine the local NO concentrations using the extended Zeldovich-mechanism. First, theoretical background of both temperature and NO-determination and measurement technique including optical fiber sensors are described. Finally, the temperature and NO dependence versus crank angle are presented and discussed at different combustion chamber locations for different engine operating conditions.
Technical Paper

Spectroscopic Measurements in Small Two-Stroke SI Engines

2009-11-03
2009-32-0030
This paper demonstrates the potential of optical sensors in the combustion chamber of a small two-stroke SI engine to detect conditions that hinder an optimal combustion process using emission bands and/or emission lines. The primary focus is on the spectroscopic examination of the combustion radiation emissions cycle-by-cycle. For this purpose, spark-ignition type combustion events, as well as the influence of both the air-fuel-ratio and the fuel type, are investigated on a crank angle resolved basis. Furthermore, an assessment of the radiation emissions of the OH, CH and C2 radicals is made. As a next step, the calculation of a temperature profile inside the combustion chamber is attempted by means of the line-emission-method regarding the thermally excited alkaline metals sodium and potassium. These data enable recognition of diffusion combustion and the detection of inadequate mixture quality.
Technical Paper

Quasi-Dimensional Combustion Simulation of a Two- Stroke Engine

2006-11-13
2006-32-0062
The paper presents an application of a quasi-dimensional (QD) model for the combustion simulation in a two-stroke engine. In contrast to 0D-models the QD-models provide an opportunity to describe the development of the combustion process in dependence on the actual thermodynamic state in the combustion chamber. The QD-models enable to couple the flame propagation with the combustion chamber geometry and with the flow field. An extensive sensitivity analysis is performed for the QD-model by varying the parameters of the QD-model itself and of the operating points. The constructed QD-model is examined under various conditions (engine speed, the delivery ratio and the air to fuel ratio) and shows a good agreement with experimental results.
Journal Article

Premature Flame Initiation in a Turbocharged DISI Engine - Numerical and Experimental Investigations

2013-04-08
2013-01-0252
This paper presents the results of experimental and numerical investigations on pre-ignition in a series-production turbocharged DISI engine. Previous studies led to the conclusion that pre-ignition can be triggered by auto-ignition of oil droplets generated in the combustion chamber. Analysis of more recent experiments shows that a modification of the engine operation parameters that promotes spray/lubricant interaction also increases pre-ignition frequency, while modifications that enhance the speed of chemical reactions (thereby favoring auto-ignition) have little or no influence. The experimental and numerical findings can be explained if we assume the existence of a substance (originating from lubricant/fuel interaction) that displays extremely short ignition delay times.
Technical Paper

Optimization of Injection of Pure Rape Seed Oil in modern Diesel Engines with Direct-Injection

2007-07-23
2007-01-2031
Natural vegetable oil like rape seed oil is a potential substitute for regular fuel for diesel engines. Compared to other biogen fuels like rape seed methyl ester (RME), pure rape seed oil is neutral towards groundwater and it needs considerably less energy and additives for production. Different physical properties of rape seed oil compared to Diesel fuel are the reason why conventional Diesel engines can hardly be used satisfactorily with rape seed oil without being modified. Poor exhaust-emission behavior is caused by the incomplete combustion. Due to poor spray atomization of vegetable oil, an increased fuel entrainment in the lubricating oil, carbonization in the combustion chamber and deposits at injectors and valves are further drawbacks of injection systems designed for conventional diesel fuel. The preheating of this fuel can solve some problems.
Technical Paper

Optical Investigations on a Mitsubishi GDI-Engine in the Driving Mode

1999-03-01
1999-01-0504
Optical investigations using optical fibres were carried out in the first available direct injection SI-engine, the Mitsubishi GDI, in the driving mode. The optical access to the combustion chamber was realized by 8 optical sensors evenly distributed in a ring on the ground electrode of the standard spark plug. All investigations, steady state (constant load and velocity) and unsteady state (engine starts), show, that there is preferred flame propagation to the intake valves, caused by a reverse tumble in-cylinder flow. As the inflammation depends on thermodynamic conditions, flow characteristics and the actual air/fuel-ratio at the spark plug, the optical sensors can be used to describe the quality of stratification.
Technical Paper

Optical Investigations of the Vaporization Behaviors of Isooctane and an Optical, Non-fluorescing Multicomponent Fuel in a Spark Ignition Direct Injection Engine

2010-10-25
2010-01-2271
Investigations of the fuel injection processes in a spark ignition direct injection engine have been performed for two different fuels. The goal of this research was to determine the differences between isooctane, which is often used as an alternative to gasoline for optical engine investigations, and a special, non-fluorescing, full boiling range multicomponent fuel. The apparent vaporization characteristics of isooctane and the multicomponent fuel were examined in homogeneous operating mode with direct injection during the intake stroke. To this end, simultaneous Mie scattering and planar laser induced fluorescence imaging experiments were performed in a transparent research engine. Both fuels were mixed with 3-Pentanone as a fluorescence tracer. A frequency-quadrupled Nd:YAG laser was used as both the fluorescent excitation source and the light scattering source.
Technical Paper

Optical Fiber Technique as a Tool to Improve Combustion Efficiency

1990-10-01
902138
A multi-optical fiber technique is presented, which enables one to detect the flame propagation during non-knocking and knocking conditions in real production engines. The measurement technique is appropriate to detect knock onset locations and to describe the propagation of knocking reaction fronts. With this knowledge, the combustion chamber shape can be optimized, leading to a better knock resistance and higher combustion efficiencies. Results of flame propagation under non-knocking and knocking engine operating conditions are presented. In addition, correlations between knock onset locations and areas in which knock damage occurs are shown for different engines. Presented are the effects of combustion chamber modifications on the combustion efficiency, based on the analysis of the optical fiber measurements.
Technical Paper

Novel Rankine Cycle for Hybrid Vehicles

2018-09-10
2018-01-1711
The European Union (EU) has defined legally-binding targets for the fleet of new cars allowing 95 grams CO2 per kilometer in 2021. It is already under discussion to reduce average emissions of the EU car fleet by further 15% in 2025 and again by 30% in 2030 compared to 2021 goal. Therefore, improvement of fuel economy is becoming one of the most important issues for the car manufacturers. Today’s conventional car powertrain systems are reaching their technical limits and will not be able to meet future fuel economy targets without further development of additional measures. This paper presents the analysis of a Rankine cycle unit applied to improve the overall efficiency of a hybrid electric vehicle (HEV). The authors propose a new concept for recovering a considerable part of exhaust waste heat from an HEV with spark ignition internal combustion engine (ICE) by applying a bottoming Rankine cycle with a Ruths storage tank.
Technical Paper

Knocking Investigations in a small Two-Stroke SI Engine

2009-11-03
2009-32-0013
The trend of higher specific power and increased volumetric efficiency leads to unwanted combustion phenomenon such as knocking, pre-ignition and self-ignition. For four-stroke engines, the literature reports that knocking depends, to a large extent, on the ignition angle, the degree of enrichment and the volumetric efficiency. In recent research, knock investigations in two-stroke engines have only been carried out to a limited extent. This paper discusses an investigation of the influence of various parameters on the knock characteristics of a small, high-speed, two-stroke SI engine. In particular, the degree of enrichment, the volumetric efficiency and the ignition timing serve as the parameters.
Journal Article

Is a High Pressure Direct Injection System a Solution to Reduce Exhaust Gas Emissions in a Small Two-Stroke Engine?

2013-10-15
2013-32-9143
Small gasoline engines are used in motorcycles and handheld machinery, because of their high power density, low cost and compact design. The reduction of hydrocarbon emissions and fuel consumption is an important factor regarding the upcoming emission standards and operational expenses. The scavenging process of the two-stroke engine causes scavenging losses. A reduction in hydrocarbon emissions due to scavenging losses can be achieved through inner mixture formation using direct injection (DI). The time frame for fuel vaporization is limited using two-stroke SI engines by the high number of revolutions. A high pressure DI system was used to offer fast and accurate injections. An injection pressure of up to 140 MPa was provided by a common rail system, built out of components normally used in automotive engineering. A standard electromagnetic injector is applied for the fuel injection. This injection unit is dimensioned for multi-point injections in diesel engines.
Technical Paper

Ion-Current Measurement in Small Two-Stroke SI Engines

2008-09-09
2008-32-0037
The cyclic changes of the cylinder pressure are mainly influenced by the primary inflammation phase, which in turn depends on the local air/fuel ratio and the residual-gas fraction at the spark plug. The ion-current measurement technique is based on the conductivity of the mixture during the internal combustion. It is therefore possible to use the signal for combustion diagnostics when using the spark plug as a sensor. This article demonstrates the potential of ion sensing at the spark plug and in the combustion chamber to detect sources of interference which prevent an optimal combustion process. Comparing the ion signals of consecutive combustion cycles delivers explanations of phenomena that could not yet be sufficiently characterized by cylinder-pressure indication. The results allow new fundamental approaches to the optimization of the combustion process.
Technical Paper

Ion Current Measurement in Diesel Engines

2004-10-25
2004-01-2922
Contemporary diesel engines are high-tech power plants that provide high torques at very good levels of efficiency. By means of modern injecting-systems such as Common-Rail Injection, combustion noise and emissions could be influenced positively as well. Diesel engine are therefore used increasingly in top-range and sports cars. Today's production ECUs have no or only very low feedback regarding the process in the combustion chamber. As long as this data is missing, the design of the maps in the ECU can only be a compromise, since production tolerances and aging processes have to be considered in advance. Disturbances in the combustion process may not be detected at all. If more knowledge about the course of combustion is provided, especially the start of combustion (SOC), various operating parameters, such as the pilot injection quantity or the beginning of current feed to the injector, could be adjusted more precisely and individually for every cylinder.
Journal Article

Investigations on the Heat Transfer in HCCI Gasoline Engines

2009-06-15
2009-01-1804
In this work, heat loss was investigated in two different HCCI single cylinder engines. Thermocouples were adapted to the surfaces of the cylinder heads and the temperature oscillations were detected in a wide range of the engine operation conditions. The local heat transfer is analyzed with port fuel and direct injection, for different engine parameters and operating points. It is shown that the spatially averaged measured heat loss in HCCI operation represents the global heat loss well. The spatial variations are small in the operation map presuming stable operating points with low cyclic variations and good engine performance. Furthermore, the heat loss measured in HCCI operation is compared to the heat loss detected in homogeneous and stratified DI-SI operation in the same engine. It is shown that the local heat losses in stratified DI-SI operation show large variations, depending on the direction of the flame propagation.
Journal Article

Investigations on the Effects of the Ignition Spark with Controlled Autoignition (CAI)

2009-06-15
2009-01-1770
Controlled Autoignition (CAI) is a very promising technology for simultaneous reduction of fuel consumption and engine-out emissions [3, 4, 9, 16]. But the operating range of this combustion mode is limited on the one hand by high pressure gradients with the subsequent occurrence of knocking, increasing NOX-emissions and cyclic variations, and on the other hand by limited operating stability due to low mixture temperatures. At higher loads the required amount of internal EGR decrease to reach self-ignition conditions decrease and hence the influence of the ignition spark gain. The timing of the ignition spark highly influence the combustion process at higher loads. With the ignition spark, pre-reactions are initialized with a defined heat release. Thus the location of inflammation and flame propagation can be strongly influenced and cyclic variations at higher loads can be reduced.
Technical Paper

Investigations on Soot Emission Behavior of A Common-Rail Diesel Engine during Steady and Non-Steady Operating Conditions by Means of Several Measuring Techniques

2005-05-11
2005-01-2154
In this work the influence of various engine load changes with different engine speeds on the soot particle concentrations and properties was investigated because these operating modes are well known for short but high soot emissions. To derive specific information on emission behavior of particle matters tests were carried out with the Two-Color-Method and the so called RAYLIX technique in a four-cylinder CR-Diesel engine. The Two-Color-Method (2CM) gives crank angle resolved information about soot formation and oxidation processes inside the combustion chamber of a single cylinder. The RAYLIX technique is a combination of Rayleigh-scattering, Laser-Induced-Incandescence (LII) and extinction measurements which enable simultaneous measurements of temporally and spatially resolved soot concentration, mean primary particle radii and number densities in the exhaust gas manifold of the same cylinder investigated by the Two-Color-Method.
Journal Article

Investigations on Pre-Ignition in Highly Supercharged SI Engines

2010-04-12
2010-01-0355
This paper presents the results of a study on reasons for the occurrence of pre-ignition in highly supercharged spark ignition engines. During the study, the phenomena to be taken into account were foremost structured into a decision tree according to their physical working principles. Using this decision tree all conceivable single mechanisms to be considered as reasons for pre-ignition could be derived. In order to judge each of them with respect to their ability to promote pre-ignition in a test engine, experimental investigations as well as numerical simulations were carried out. The interdependence between engine operating conditions and pre-ignition frequency was examined experimentally by varying specific parameters. Additionally, optical measurements using an UV sensitive high-speed camera system were performed to obtain information about the spatial distribution of pre-ignition origins and their progress.
Technical Paper

Investigations of the Formation and Oxidation of Soot Inside a Direct Injection Spark Ignition Engine Using Advanced Laser-Techniques

2010-04-12
2010-01-0352
In this work the formation and oxidation of soot inside a direct injection spark ignition engine at different injection and ignition timing was investigated. In order to get two-dimensional data during the expansion stroke, the RAYLIX-technique was applied in the combustion chamber of an optical accessible single cylinder engine. This technique is a combination of Rayleigh-scattering, laser-induced incandescence (LII) and extinction which enables simultaneous measurements of temporally and spatially resolved soot concentration, mean particle radii and number densities. These first investigations show that the most important source for soot formation during combustion are pool fires, i.e. liquid fuel burning on the top of the piston. These pool fires were observed under almost all experimental conditions.
X