Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

A New Flame Jet Concept to Improve the Inflammation of Lean Burn Mixtures in SI Engines

2005-10-24
2005-01-3688
Engines with gasoline direct injection promise an increase in efficiency mainly due to the overall lean mixture and reduced pumping losses at part load. But the near stoichiometric combustion of the stratified mixture with high combustion temperature leads to high NOx emissions. The need for expensive lean NOx catalysts in combination with complex operation strategies may reduce the advantages in efficiency significantly. The Bowl-Prechamber-Ignition (BPI) concept with flame jet ignition was developed to ignite premixed lean mixtures in DISI engines. The mainly homogeneous lean mixture leads to low combustion temperatures and subsequently to low NOx emissions. By additional EGR a further reduction of the combustion temperature is achievable. The BPI concept is realized by a prechamber spark plug and a piston bowl. The main feature of the concept is its dual injection strategy.
Technical Paper

A Study of the In-Nozzle Flow Characteristic of Valve Covered Orifice Nozzles for Gasoline Direct Injection

2005-10-24
2005-01-3684
For spark ignition engines, the most effective way to reduce the overall fuel consumption and CO2 emissions respectively is the implementation of gasoline direct injection technology. In comparison to the current wall and air guided systems, the direct injection system of the second generation - the spray guided DI- is the most promising one with respect to fuel economy and emission. In order to exploit its full potential, a thorough combustion process development regarding injector and spark plug design and their positioning within the combustion chamber is essential. Especially multihole injectors offer many degrees of freedom with regard to the nozzle shape and spray pattern. To reduce the development work and costs necessary to identify the ideal nozzle characteristic and spray pattern, reliable CFD models are necessary.
Technical Paper

A Study of the Thermochemical Conditions in the Exhaust Manifold Using Secondary Air in a 2.0 L Engine

2002-05-06
2002-01-1676
The California LEV1 II program will be introduced in the year 2003 and requires a further reduction of the exhaust emissions of passenger cars. The cold start emissions represent the main part of the total emissions of the FTP2-Cycle. Cold start emissions can be efficiently reduced by injecting secondary air (SA) in the exhaust port making compliance with the most stringent standards possible. The thermochemical conditions (mixing rate and temperature of secondary air and exhaust gas, exhaust gas composition, etc) prevailing in the exhaust system are described in this paper. This provides knowledge of the conditions for auto ignition of the mixture within the exhaust manifold. The thus established exothermal reaction (exhaust gas post-combustion) results in a shorter time to light-off temperature of the catalyst. The mechanisms of this combustion are studied at different engine idle conditions.
Technical Paper

Application of a New Optical Fiber Technique for Flame Propagation Diagnostics in IC Engines

1988-10-01
881637
A multi-optical fiber measurement technique is presented which can determine spatial flame propagation with a high temporal resolution. With this measurement technique it is possible to investigate the combustion process in both Diesel and SI engines. The measurement technique can also be applied for the detection of flame propagation in research engines and in actual production engines for performing analysis of special problems such as knocking combustion, combustion chamber design studies which concern flame propagation, the influence of engine parameters on flame propagation, ignition and inflammability behavior. The new measurement technique is discussed in detail and the application of optical measuring points in the combustion chamber walls is demonstrated. A special non-contacting optical transmission system has been developed for the observation of flame propagation.
Journal Article

Effect of different nozzle geometries using Pure Rapeseed Oil in a modern Diesel engine on combustion and exhaust emissions

2011-08-30
2011-01-1947
Rapeseed oil can be a possible substitute for fossil fuel in Diesel engines. Due to different physical properties of rapeseed oil like higher viscosity and higher compressibility compared to diesel fuel, rapeseed oil cannot be easily used in conventional Diesel engines without modifications. Especially incomplete combustion leads to deposits in the combustion chamber and higher exhaust gas emissions. These unfavorable characteristics are caused primarily by insufficient mixture preparation. The adjustment of the injection system will improve the mixture preparation and the combustion of a Diesel engine, operated with rapeseed oil. The nozzle geometry is the main parameter of the whole injection system chain to realize a better combustion process and so higher efficiency and lower exhaust gas emissions.
Technical Paper

Experimental Heat Flux Analysis of an Automotive Diesel Engine in Steady-State Operation and During Warm-Up

2011-09-11
2011-24-0067
Advanced thermal management systems in passenger cars present a possibility to increase efficiency of current and future vehicles. However, a vehicle integrated thermal management of the combustion engine is essential to optimize the overall thermal system. This paper shows results of an experimental heat flux analysis of a state-of-the-art automotive diesel engine with common rail injection, map-controlled thermostat and split cooling system. Measurements on a climatic chamber engine test bench were performed to investigate heat fluxes and energy balance in steady-state operation and during engine warm-up from different engine start temperatures. The analysis includes the influence of the operating point and operating parameters like EGR rate, injection strategy and coolant temperature on the engine energy balance.
Journal Article

Experimental Studies on the Occurrence of Low-Speed Pre-Ignition in Turbocharged GDI Engines

2015-04-14
2015-01-0753
In the present paper the results of a set of experimental investigations on LSPI are discussed. The ignition system of a test engine was modified to enable random spark advance in one of the four cylinders. LSPI sequences were successfully triggered and exhibited similar characteristics compared to regularly occurring pre-ignition. Optical investigations applying a high speed camera system enabling a visualization of the combustion process were performed. In a second engine the influence of the physical properties of the considered lubricant on the LSPI frequency was analyzed. In addition different piston ring assemblies have been tested. Moreover an online acquisition of the unburned hydrocarbon emissions in the exhaust gas was performed. The combination of these experimental techniques in the present study provided further insights on the development of LSPI sequences.
Technical Paper

Influence of Injection Nozzle Hole Diameter on Highly Premixed and Low Temperature Diesel Combustion and Full Load Behavior

2010-10-25
2010-01-2109
Diesel engines face difficult challenges with respect to engine-out emissions, efficiency and power density as the legal requirements concerning emissions and fuel consumption are constantly increasing. In general, for a diesel engine to achieve low raw emissions a well-mixed fuel-air mixture, burning at low combustion temperatures, is necessary. Highly premixed diesel combustion is a feasible way to reduce the smoke emissions to very low levels compared to conventional diesel combustion. In order to reach both, very low NOX and soot emissions, high rates of cooled EGR are necessary. With high rates of cooled EGR the NOX formation can be suppressed almost completely. This paper investigates to what extent the trade-off between emissions, fuel consumption and power of a diesel engine can be resolved by highly premixed and low temperature diesel combustion using injection nozzles with reduced injection hole diameters and high pressure fuel injection.
Technical Paper

Influence of Mixture Preparation on Combustion and Emissions Inside an SI Engine by Means of Visualization, PIV and IR Thermography During Cold Operating Conditions

1999-10-25
1999-01-3644
The focus of this work was to determine the influence of spray targeting on temperature distributions, combustion progress and unburned hydrocarbon (HC) emissions at cold operating conditions, and to show the capability of model and full engine tests adapted for different measurement techniques. A comprehensive study applying endoscopic visualization, infrared thermography, combustion and emission measurements was carried out in a 4-stroke 4-cylinder 16-valve production engine with intake port injection during different engine operating conditions including injection angle and timing. In addition 2D visualization and PIV measurements were performed in a back-to-back model test section with good optical access to the intake manifold and the combustion chamber. The measurements in both set ups were in good agreement and show that model tests could lead to useful findings for a real engine.
Technical Paper

Investigations of Ignition Processes Using High Frequency Ignition

2013-04-08
2013-01-1633
High frequency ignition (HFI) and conventional transistor coil ignition (TCI) were investigated with an optically accessible single-cylinder research engine to gain fundamental understanding of the chemical reactions taking place prior to the onset of combustion. Instead of generating heat in the gap of a conventional spark plug, a high frequency / high voltage electric field is employed in HFI to form chemical radicals. It is generated using a resonant circuit and sharp metallic tips placed in the combustion chamber. The setup is optimized to cause a so-called corona discharge in which highly energized channels (streamers) are created while avoiding a spark discharge. At a certain energy the number of ionized hydrocarbon molecules becomes sufficient to initiate self-sustained combustion. HFI enables engine operation with highly diluted (by air or EGR) gasoline-air mixtures or at high boost levels due to the lower voltage required.
Technical Paper

Investigations of the Formation and Oxidation of Soot Inside a Direct Injection Spark Ignition Engine Using Advanced Laser-Techniques

2010-04-12
2010-01-0352
In this work the formation and oxidation of soot inside a direct injection spark ignition engine at different injection and ignition timing was investigated. In order to get two-dimensional data during the expansion stroke, the RAYLIX-technique was applied in the combustion chamber of an optical accessible single cylinder engine. This technique is a combination of Rayleigh-scattering, laser-induced incandescence (LII) and extinction which enables simultaneous measurements of temporally and spatially resolved soot concentration, mean particle radii and number densities. These first investigations show that the most important source for soot formation during combustion are pool fires, i.e. liquid fuel burning on the top of the piston. These pool fires were observed under almost all experimental conditions.
Journal Article

Investigations on Pre-Ignition in Highly Supercharged SI Engines

2010-04-12
2010-01-0355
This paper presents the results of a study on reasons for the occurrence of pre-ignition in highly supercharged spark ignition engines. During the study, the phenomena to be taken into account were foremost structured into a decision tree according to their physical working principles. Using this decision tree all conceivable single mechanisms to be considered as reasons for pre-ignition could be derived. In order to judge each of them with respect to their ability to promote pre-ignition in a test engine, experimental investigations as well as numerical simulations were carried out. The interdependence between engine operating conditions and pre-ignition frequency was examined experimentally by varying specific parameters. Additionally, optical measurements using an UV sensitive high-speed camera system were performed to obtain information about the spatial distribution of pre-ignition origins and their progress.
Technical Paper

Investigations on Soot Emission Behavior of A Common-Rail Diesel Engine during Steady and Non-Steady Operating Conditions by Means of Several Measuring Techniques

2005-05-11
2005-01-2154
In this work the influence of various engine load changes with different engine speeds on the soot particle concentrations and properties was investigated because these operating modes are well known for short but high soot emissions. To derive specific information on emission behavior of particle matters tests were carried out with the Two-Color-Method and the so called RAYLIX technique in a four-cylinder CR-Diesel engine. The Two-Color-Method (2CM) gives crank angle resolved information about soot formation and oxidation processes inside the combustion chamber of a single cylinder. The RAYLIX technique is a combination of Rayleigh-scattering, Laser-Induced-Incandescence (LII) and extinction measurements which enable simultaneous measurements of temporally and spatially resolved soot concentration, mean primary particle radii and number densities in the exhaust gas manifold of the same cylinder investigated by the Two-Color-Method.
Journal Article

Investigations on the Effects of the Ignition Spark with Controlled Autoignition (CAI)

2009-06-15
2009-01-1770
Controlled Autoignition (CAI) is a very promising technology for simultaneous reduction of fuel consumption and engine-out emissions [3, 4, 9, 16]. But the operating range of this combustion mode is limited on the one hand by high pressure gradients with the subsequent occurrence of knocking, increasing NOX-emissions and cyclic variations, and on the other hand by limited operating stability due to low mixture temperatures. At higher loads the required amount of internal EGR decrease to reach self-ignition conditions decrease and hence the influence of the ignition spark gain. The timing of the ignition spark highly influence the combustion process at higher loads. With the ignition spark, pre-reactions are initialized with a defined heat release. Thus the location of inflammation and flame propagation can be strongly influenced and cyclic variations at higher loads can be reduced.
Technical Paper

Ion Current Measurement in Diesel Engines

2004-10-25
2004-01-2922
Contemporary diesel engines are high-tech power plants that provide high torques at very good levels of efficiency. By means of modern injecting-systems such as Common-Rail Injection, combustion noise and emissions could be influenced positively as well. Diesel engine are therefore used increasingly in top-range and sports cars. Today's production ECUs have no or only very low feedback regarding the process in the combustion chamber. As long as this data is missing, the design of the maps in the ECU can only be a compromise, since production tolerances and aging processes have to be considered in advance. Disturbances in the combustion process may not be detected at all. If more knowledge about the course of combustion is provided, especially the start of combustion (SOC), various operating parameters, such as the pilot injection quantity or the beginning of current feed to the injector, could be adjusted more precisely and individually for every cylinder.
Technical Paper

Ion-Current Measurement in Small Two-Stroke SI Engines

2008-09-09
2008-32-0037
The cyclic changes of the cylinder pressure are mainly influenced by the primary inflammation phase, which in turn depends on the local air/fuel ratio and the residual-gas fraction at the spark plug. The ion-current measurement technique is based on the conductivity of the mixture during the internal combustion. It is therefore possible to use the signal for combustion diagnostics when using the spark plug as a sensor. This article demonstrates the potential of ion sensing at the spark plug and in the combustion chamber to detect sources of interference which prevent an optimal combustion process. Comparing the ion signals of consecutive combustion cycles delivers explanations of phenomena that could not yet be sufficiently characterized by cylinder-pressure indication. The results allow new fundamental approaches to the optimization of the combustion process.
Technical Paper

Optical Fiber Technique as a Tool to Improve Combustion Efficiency

1990-10-01
902138
A multi-optical fiber technique is presented, which enables one to detect the flame propagation during non-knocking and knocking conditions in real production engines. The measurement technique is appropriate to detect knock onset locations and to describe the propagation of knocking reaction fronts. With this knowledge, the combustion chamber shape can be optimized, leading to a better knock resistance and higher combustion efficiencies. Results of flame propagation under non-knocking and knocking engine operating conditions are presented. In addition, correlations between knock onset locations and areas in which knock damage occurs are shown for different engines. Presented are the effects of combustion chamber modifications on the combustion efficiency, based on the analysis of the optical fiber measurements.
Technical Paper

Optical Investigations of the Vaporization Behaviors of Isooctane and an Optical, Non-fluorescing Multicomponent Fuel in a Spark Ignition Direct Injection Engine

2010-10-25
2010-01-2271
Investigations of the fuel injection processes in a spark ignition direct injection engine have been performed for two different fuels. The goal of this research was to determine the differences between isooctane, which is often used as an alternative to gasoline for optical engine investigations, and a special, non-fluorescing, full boiling range multicomponent fuel. The apparent vaporization characteristics of isooctane and the multicomponent fuel were examined in homogeneous operating mode with direct injection during the intake stroke. To this end, simultaneous Mie scattering and planar laser induced fluorescence imaging experiments were performed in a transparent research engine. Both fuels were mixed with 3-Pentanone as a fluorescence tracer. A frequency-quadrupled Nd:YAG laser was used as both the fluorescent excitation source and the light scattering source.
Technical Paper

Optical Investigations on a Mitsubishi GDI-Engine in the Driving Mode

1999-03-01
1999-01-0504
Optical investigations using optical fibres were carried out in the first available direct injection SI-engine, the Mitsubishi GDI, in the driving mode. The optical access to the combustion chamber was realized by 8 optical sensors evenly distributed in a ring on the ground electrode of the standard spark plug. All investigations, steady state (constant load and velocity) and unsteady state (engine starts), show, that there is preferred flame propagation to the intake valves, caused by a reverse tumble in-cylinder flow. As the inflammation depends on thermodynamic conditions, flow characteristics and the actual air/fuel-ratio at the spark plug, the optical sensors can be used to describe the quality of stratification.
Technical Paper

Optimization of Injection of Pure Rape Seed Oil in modern Diesel Engines with Direct-Injection

2007-07-23
2007-01-2031
Natural vegetable oil like rape seed oil is a potential substitute for regular fuel for diesel engines. Compared to other biogen fuels like rape seed methyl ester (RME), pure rape seed oil is neutral towards groundwater and it needs considerably less energy and additives for production. Different physical properties of rape seed oil compared to Diesel fuel are the reason why conventional Diesel engines can hardly be used satisfactorily with rape seed oil without being modified. Poor exhaust-emission behavior is caused by the incomplete combustion. Due to poor spray atomization of vegetable oil, an increased fuel entrainment in the lubricating oil, carbonization in the combustion chamber and deposits at injectors and valves are further drawbacks of injection systems designed for conventional diesel fuel. The preheating of this fuel can solve some problems.
X