Refine Your Search

Topic

Search Results

Standard

Bluetooth™ Wireless Protocol for Automotive Applications

2001-12-31
HISTORICAL
J2561_200112
This SAE Information Report defines the functionality of typical Bluetooth applications used for remotely accessing in-vehicle automotive installations of electronic devices. Remote access may be achieved directly with on-board Bluetooth modules, or indirectly via a custom designed gateway that communicates with Bluetooth and non-Bluetooth modules alike. Access to the vehicle, in the form of two-way communications, may be made via a single master port, or via multiple ports on the vehicle. The Bluetooth technology may also be used in conjunction with other types of off-board wireless technology. This report recommends using a message strategy that is already defined in one or more of the documents listed in 2.1.1, 2.1.4, 2.1.5, and 2.1.6. Those strategies may be used for some of the typical remote communications with a vehicle. It is recognized, however, that there may be specific applications requiring a unique message strategy or structure.
Standard

Bluetooth™ Wireless Protocol for Automotive Applications

2016-11-08
CURRENT
J2561_201611
This SAE Information Report defines the functionality of typical Bluetooth applications used for remotely accessing in-vehicle automotive installations of electronic devices. Remote access may be achieved directly with on-board Bluetooth modules, or indirectly via a custom designed gateway that communicates with Bluetooth and non-Bluetooth modules alike. Access to the vehicle, in the form of two-way communications, may be made via a single master port, or via multiple ports on the vehicle. The Bluetooth technology may also be used in conjunction with other types of off-board wireless technology. This report recommends using a message strategy that is already defined in one or more of the documents listed in 2.1.1, 2.1.4, 2.1.5, and 2.1.6. Those strategies may be used for some of the typical remote communications with a vehicle. It is recognized, however, that there may be specific applications requiring a unique message strategy or structure.
Standard

CLASS B DATA COMMUNICATION NETWORK INTERFACE

1991-08-01
HISTORICAL
J1850_199108
This SAE Recommended Practice establishes the requirements for a Class B Data Communication Network Interface applicable to all On and Off-Road Land Based Vehicles. It defines a minimum set of data communication requirements such that the resulting network is cost effective for simple applications and flexible enough to use in complex applications. Taken in total, the requirements contained in this document specify a data communications network that satisfies the needs of automotive manufacturers. This specification describes two specific implementations of the network, based on media/Physical Layer differences. One Physical Layer is optimized for a data rate of 10.4 Kbps while the other Physical Layer is optimized for a data rate of 41.6 Kbps. Additionally, this document outlines one Physical Layer alternative to the two fully defined implementations that may allow the network to operate at a 125 Kbps data rate.
Standard

CLASS B DATA COMMUNICATION NETWORK INTERFACE

1990-07-01
HISTORICAL
J1850_199007
This SAE Recommended Practice establishes the requirements for a Class B Data Communication Network Interface applicable to all on and off-road land based vehicles. This document defines a minimum set of data communication requirements such that the resulting network is cost effective for simple applications and flexible enough to use in complex applications. Although this document addresses all seven layers of the OSI model, it primarily focuses on the Network, Data Link and Physical Layers. Taken in total, the requirements contained in this document specify a data communications network philosophy that satisfies the needs of automotive manufacturers. Although the higher layer OSI requirements are essentially identical for all networks defined by this document (see Section 3.3, Figure 1), differing data rate requirements necessitate the use of different physical layers.
Standard

CLASS B DATA COMMUNICATIONS NETWORK INTERFACE

1996-11-01
HISTORICAL
J1850_199611
This SAE Standard establishes the requirements for a Class B Data Communication Network Interlace applicable to all On- and Off-Road Land-Based Vehicles. It defines a minimum set of data communication requirements such that the resulting network is cost effective for simple applications and flexible enough to use in complex applications. Taken in total, the requirements contained in this document specify a data communications network that satisfies the needs of automotive manufacturers. This specification describes two specific implementations of the network, based on media/Physical Layer differences. One Physical Layer is optimized for a data rate of 10.4 Kbps while the other Physical Layer is optimized for a data rate of 41.6 Kbps (see Appendix A for a checklist of application-specific features). The Physical Layer parameters are specified as they would be detected on the network media, not within any particular module or integrated circuit implementation.
Standard

CLASS B DATA COMMUNICATIONS NETWORK INTERFACE

1994-02-01
HISTORICAL
J1850_199402
This SAE Standard establishes the requirements for a Class B Data Communication Network Interface applicable to all On- and Off-Road Land-Based Vehicles. It defines a minimum set of data communication requirements such that the resulting network is cost effective for simple applications and flexible enough to use in complex applications. Taken in total, the requirements contained in this document specify a data communications network that satisfies the needs of automotive manufacturers. This specification describes two specific implementations of the network, based on media/Physical Layer differences. One Physical Layer is optimized for a data rate of 10.4 Kbps while the other Physical Layer is optimized for a data rate of 41.6 Kbps (see Appendix A for a checklist of application-specific features).
Standard

CLASS B DATA COMMUNICATIONS NETWORK INTERFACE

1994-05-01
HISTORICAL
J1850_199405
This SAE Standard establishes the requirements for a Class B Data Communication Network Interface applicable to all On- and Off-Road Land-Based Vehicles. It defines a minimum set of data communication requirements such that the resulting network is cost effective for simple applications and flexible enough to use in complex applications. Taken in total, the requirements contained in this document specify a data communications network that satisfies the needs of automotive manufacturers. This specification describes two specific implementations of the network, based on media/Physical Layer differences. One Physical Layer is optimized for a data rate of 10.4 Kbps while the other Physical Layer is optimized for a data rate of 41.6 Kbps (see Appendix A for a checklist of application-specific features). The Physical Layer parameters are specified as they would be detected on the network media, not within any particular module or integrated circuit implementation.
Standard

CLASS B DATA COMMUNICATIONS NETWORK INTERFACE

1995-07-01
HISTORICAL
J1850_199507
This SAE Standard establishes the requirements for a Class B Data Communication Network Interface applicable to all On- and Off-Road Land-Based Vehicles. It defines a minimum set of data communication requirements such that the resulting network is cost effective for simple applications and flexible enough to use in complex applications. Taken in total, the requirements contained in this document specify a data communications network that satisfies the needs of automotive manufacturers. This specification describes two specific implementations of the network, based on media/Physical Layer differences. One Physical Layer is optimized for a data rate of 10.4 Kbps while the other Physical Layer is optimized for a data rate of 41.6 Kbps (see Appendix A for a checklist of application-specific features). The Physical Layer parameters are specified as they would be detected on the network media, not within any particular module or integrated circuit implementation.
Standard

Class B Data Communication Network Messages - Detailed Header Formats and Physical Address Assignments

2011-04-01
CURRENT
J2178/1_201104
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for non-diagnostic messages. Refer to SAE J1979 for specifications of emissions related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic data fields. The description of the network interface hardware, basic protocol definition, the electrical specifications, and the CRC byte are given in SAE J1850.
Standard

Class B Data Communication Network Messages - Part 3 - Frame IDs for Single-Byte Forms of Headers

2011-05-02
CURRENT
J2178/3_201105
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for non-diagnostic messages. Refer to SAE J1979 for specifications of emissions related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic data fields. The description of the network interface hardware, basic protocol definition, electrical specifications, and the CRC byte is given in SAE J1850.
Standard

Class B Data Communications Network Interface

2022-12-20
CURRENT
J1850_202212
This SAE Standard establishes the requirements for a Class B Data Communication Network Interface applicable to all On-and OffRoad Land-Based Vehicles. It defines a minimum set of data communication requirements such that the resulting network is cost effective for simple applications and flexible enough to use in complex applications. Taken in total, the requirements contained in this document specify a data communications network that satisfies the needs of automotive manufacturers. This specification describes two specific implementations of the network, based on media/Physical Layer differences. One Physical Layer is optimized for a data rate of 10.4 Kbps while the other Physical Layer is optimized for a data rate of 41.6 Kbps (see Appendix A for a checklist of application-specific features). The Physical Layer parameters are specified as they would be detected on the network media, not within any particular module or integrated circuit implementation.
Standard

Class B Data Communications Network Interface

2001-05-30
HISTORICAL
J1850_200105
This SAE Standard establishes the requirements for a Class B Data Communication Network Interface applicable to all On- and Off-Road Land-Based Vehicles. It defines a minimum set of data communication requirements such that the resulting network is cost effective for simple applications and flexible enough to use in complex applications. Taken in total, the requirements contained in this document specify a data communications network that satisfies the needs of automotive manufacturers. This specification describes two specific implementations of the network, based on media/Physical Layer differences. One Physical Layer is optimized for a data rate of 10.4 Kbps while the other Physical Layer is optimized for a data rate of 41.6 Kbps (see Appendix A for a checklist of application-specific features). The Physical Layer parameters are specified as they would be detected on the network media, not within any particular module or integrated circuit implementation.
Standard

Class B Data Communications Network Interface

2006-06-07
HISTORICAL
J1850_200606
This SAE Standard establishes the requirements for a Class B Data Communication Network Interface applicable to all On- and Off-Road Land-Based Vehicles. It defines a minimum set of data communication requirements such that the resulting network is cost effective for simple applications and flexible enough to use in complex applications. Taken in total, the requirements contained in this document specify a data communications network that satisfies the needs of automotive manufacturers. This specification describes two specific implementations of the network, based on media/Physical Layer differences. One Physical Layer is optimized for a data rate of 10.4 Kbps while the other Physical Layer is optimized for a data rate of 41.6 Kbps (see Appendix A for a checklist of application-specific features). The Physical Layer parameters are specified as they would be detected on the network media, not within any particular module or integrated circuit implementation.
Standard

Class B Data Communications Network Interface

2015-10-14
HISTORICAL
J1850_201510
This SAE Standard establishes the requirements for a Class B Data Communication Network Interface applicable to all On-and OffRoad Land-Based Vehicles. It defines a minimum set of data communication requirements such that the resulting network is cost effective for simple applications and flexible enough to use in complex applications. Taken in total, the requirements contained in this document specify a data communications network that satisfies the needs of automotive manufacturers. This specification describes two specific implementations of the network, based on media/Physical Layer differences. One Physical Layer is optimized for a data rate of 10.4 Kbps while the other Physical Layer is optimized for a data rate of 41.6 Kbps (see Appendix A for a checklist of application-specific features). The Physical Layer parameters are specified as they would be detected on the network media, not within any particular module or integrated circuit implementation.
Standard

Communication Transceivers Qualification Requirements - CAN

2019-07-18
HISTORICAL
J2962/2_201907
This document covers the requirements for transceiver qualification. Requirements stated in this document will provide a minimum standard level of performance for the CAN transceiver in the IC to which all compatible transceivers shall be designed. No other features in the IC are tested or qualified as part of this recommended practice. This will assure robust serial data communication among all connected devices, regardless of supplier. The goal of SAE J2962-2 is to commonize approval processes of CAN transceivers across OEMs. The intended audience includes, but is not limited to, CAN transceiver suppliers, component release engineers, and vehicle system engineers.
Standard

Communication Transceivers Qualification Requirements - Ethernet

2021-09-21
HISTORICAL
J2962-3_202109
This SAE Recommended Practice covers the requirements for ethernet physical layer (PHY) qualification. Requirements stated in this document provide a minimum standard level of performance for the PHY in the IC to which all compatible ethernet communications PHY shall be designed. When the communications chipset is an ethernet switch with an integrated automotive PHY (xBASE-T1), then the testing shall include performance for all switch PHY ports as well as each controller interface. No other features in the IC are tested or qualified as part of this SAE Recommended Practice. This assures robust serial data communication among all connected devices regardless of supplier. The goal of SAE J2962-3 is to commonize approval processes of ethernet PHYs across OEMs. The intended audience includes, but is not limited to, ethernet PHY suppliers, component release engineers, and vehicle system engineers.
Standard

Communication Transceivers Qualification Requirements - LIN

2019-07-18
HISTORICAL
J2962/1_201907
This document covers the requirements for transceiver qualification. Requirements stated in this document will provide a minimum standard level of performance for the LIN transceiver block in the IC to which all compatible transceivers shall be designed. No other features in the IC are tested or qualified as part of this recommended practice. This will assure robust serial data communication among all connected devices regardless of supplier. The goal of SAE J2962-1 is to commonize approval processes of LIN transceivers across OEMs. The intended audience includes, but is not limited to, LIN transceiver suppliers, component release engineers, and vehicle system engineers.
Standard

File Structures for a Node Capability File (NCF)

2010-01-07
HISTORICAL
J2602/3_201001
This document covers the requirements for SAE implementations based on LIN 2.0. Requirements stated in this document will provide a minimum standard level of performance to which all compatible systems, design and development tools, software, ECUs and media shall be designed. This will assure consistent and unambiguous serial data communication among all connected devices regardless of supplier. This document may be referenced by any vehicle OEM component technical specification that describes any given ECU in which the single wire data link controller and physical layer interface is located. The intended audience includes, but is not limited to, ECU suppliers, LIN controller suppliers, LIN transceiver suppliers, component release engineers and vehicle system engineers.
Standard

File Structures for a Node Capability File (NCF) and LIN Description File (LDF)

2021-10-01
CURRENT
J2602-3_202110
This document covers the requirements for SAE implementations based on ISO 17987. Requirements stated in this document will provide a minimum standard level of performance to which all compatible systems, design and development tools, software, ECUs, and media shall be designed. This will assure consistent and unambiguous serial data communication among all connected devices regardless of supplier. This document may be referenced by any vehicle OEM component technical specification that describes any given ECU in which the single wire data link controller and physical layer interface is located. The intended audience includes, but is not limited to, ECU suppliers, LIN controller suppliers, LIN transceiver suppliers, component release engineers, and vehicle system engineers. The term “master” has been replaced by “commander” and term “slave” with “responder” in the following sections.
Standard

GLOSSARY OF AUTOMOTIVE ELECTRONIC TERMS

1982-11-01
HISTORICAL
J1213_198211
This Glossary confines its content to the specific field of electronic systems and subsystems as they pertain to the automotive engineer.
X