Refine Your Search

Topic

Author

Search Results

Technical Paper

Time-Resolved Measurements and Analysis of In-Cylinder Gases and Particulates in Compression-Ignition Engines

1996-05-01
961168
The extraction of small quantities of gas and particulates from diesel engine cylinders allows time-resolved gas and particulate analysis to be performed outside the engine during a short window of a few degrees crank angle at any stage of the engine cycle. The paper describes the design features and operation of a high-speed, intermittent sampling valve for extracting in-cylinder gases and particulates from diesel engines at any selected instant of the combustion process. Various sampling valve configurations are outlined. Detailed analysis of gas flow through the valve and the performance of the electromagnetic actuator and plunger are given in order to facilitate the design of the sampling valve. Finally, examples of the uses of the sampling valve in a direct-injection diesel engine are provided. These demonstrate how gaseous emissions such as NOx, uHC, CO2, and particulate emissions can be sampled at any part of the combustion process and analysed.
Technical Paper

The Upper-Load Extension of a Boosted Direct Injection Poppet Valve Two-Stroke Gasoline Engine

2016-10-17
2016-01-2339
Engine downsizing can effectively improve the fuel economy of spark ignition (SI) gasoline engines, but extreme downsizing is limited by knocking combustion and low-speed pre-ignition at higher loads. A 2-stroke SI engine can produce higher upper load compared to its naturally aspirated 4-stroke counterpart with the same displacement due to the double firing frequency at the same engine speed. To determine the potential of a downsized two-cylinder 2-stroke poppet valve SI gasoline engine with 0.7 L displacement in place of a naturally aspirated 1.6 L gasoline (NA4SG) engine, one-dimensional models for the 2-stroke gasoline engine with a single turbocharger and a two-stage supercharger-turbocharger boosting system were set up and validated by experimental results.
Technical Paper

The Modeling and Design of a Boosted Uniflow Scavenged Direct Injection Gasoline (BUSDIG) Engine

2015-09-01
2015-01-1970
Engine downsizing of the spark ignition gasoline engine is recognized as one of the most effective approaches to improve the fuel economy of a passenger car. However, further engine downsizing beyond 50% in a 4-stroke gasoline engine is limited by the occurrence of abnormal combustion events as well as much greater thermal and mechanical loads. In order to achieve aggressive engine downsizing, a boosted uniflow scavenged direct injection gasoline (BUSDIG) engine concept has been proposed and researched by means of CFD simulation and demonstration in a single cylinder engine. In this paper, the intake port design on the in-cylinder flow field and gas exchange characteristics of the uniflow 2-stroke cycle was investigated by computational fluid dynamics (CFD). In particular, the port orientation on the in-cylinder swirl, the trapping efficiency, charging efficiency and scavenging efficiency was analyzed in details.
Technical Paper

The Dilution, Chemical, and Thermal Effects of Exhaust Gas Recirculation on Diesel Engine Emissions - Part 3: Effects of Water Vapour

1997-05-01
971659
Water vapour is a main constituent of exhaust gas recirculation (EGR) in diesel engines and its influence on combustion and emissions were investigated. The following effects of the water vapour were examined experimentally: the effect of replacing part of the inlet charge oxygen (dilution effect), the effect of the higher specific heat capacity of water vapour in comparison with that of oxygen it replaces (thermal effect), the effect of dissociation of water vapour (chemical effect), as well as the overall effect of water vapour on combustion and emissions. Water vapour was introduced into the inlet charge, progressively, so that up to 3 percent of the inlet charge mass was displaced. This was equivalent to the amount of water vapour contained in 52 percent by mass of EGR for the engine operating condition tested in this work.
Technical Paper

The Dilution, Chemical, and Thermal Effects of Exhaust Gas Recirculation on Diesel Engine Emissions - Part 1: Effect of Reducing Inlet Charge Oxygen

1996-05-01
961165
This is a first of a series of papers describing how the replacement of some of the inlet air with EGR modifies the diesel combustion process and thereby affects the exhaust emissions. This paper deals with only the reduction of oxygen in the inlet charge to the engine (dilution effect). The oxygen in the inlet charge to a direct injection diesel engine was progressively replaced by inert gases, whilst the engine speed, fuelling rate, injection timing, total mass and the specific heat capacity of the inlet charge were kept constant. The use of inert gases for oxygen replacement, rather than carbon dioxide (CO2) or water vapour normally found in EGR, ensured that the effects on combustion of dissociation of these species were excluded. In addition, the effects of oxygen replacement on ignition delay were isolated and quantified.
Technical Paper

The Combustion and Emission Characteristics of Ethanol on a Port Fuel Injection HCCI Engine

2006-04-03
2006-01-0631
With the application of valve timing strategy to inlet and exhaust valves, Homogeneous Charge Compression Ignition (HCCI) combustion was achieved by varying the amount of trapped residuals through negative valve overlap on a Ricardo Hydra four-stroke port fuel injection engine fueled with ethanol. The effect of ethanol on HCCI combustion and emission characteristics at different air-fuel ratios, speeds and valve timings was investigated. The results indicate that HCCI ethanol combustion can be achieved through changing inlet and exhaust valve timings. HCCI ethanol combustion range can be expanded to high speeds and lean burn mixture. Meanwhile, the factors influencing ignition timing and combustion duration are valve timing, lambda and speeds. Moreover, NOx emissions are extremely low under HCCI combustion. The emissions-speed and emissions-lambda relationships are obtained and analyzed.
Technical Paper

Study of SI-HCCI-SI Transition on a Port Fuel Injection Engine Equipped with 4VVAS

2007-04-16
2007-01-0199
A strategy to actualize the dual-mode (SI mode and HCCI mode) operation of gasoline engine was investigated. The 4VVAS (4 variable valve actuating system), capable of independently controlling the intake and exhaust valve lifts and timings, was incorporated into a specially designed cylinder head for a single cylinder research engine and a 4VVAS-HCCI gasoline engine test bench was established. The experimental research was carried out to study the dynamic control strategies for transitions between HCCI and SI modes on the HCCI operating boundaries. Results show that equipped with the 4VVAS cylinder head, the engine can be operated in HCCI or SI mode to meet the demands of different operating conditions. 4VVAS enables the rapid and effective control over the in-cylinder residual gas, and therefore dynamic transitions between HCCI and SI can be stably achieved. It is easier to achieve transition from HCCI to SI than reversely due to the influence of thermo-inertia.
Technical Paper

Reduction of Methane Slip Using Premixed Micro Pilot Combustion in a Heavy-Duty Natural Gas-Diesel Engine

2015-09-01
2015-01-1798
An experimental study has been carried out with the end goal of minimizing engine-out methane emissions with Premixed Micro Pilot Combustion (PMPC) in a natural gas-diesel Dual-Fuel™ engine. The test engine used is a heavy-duty single cylinder engine with high pressure common rail diesel injection as well as port fuel injection of natural gas. Multiple variables were examined, including injection timings, exhaust gas recirculation (EGR) percentages, and rail pressure for diesel, conventional Dual-Fuel, and PMPC Dual-Fuel combustion modes. The responses investigated were pressure rise rate, engine-out emissions, heat release and indicated specific fuel consumption. PMPC reduces methane slip when compared to conventional Dual-Fuel and improves emissions and fuel efficiency at the expense of higher cylinder pressure.
Technical Paper

Potentials of External Exhaust Gas Recirculation and Water Injection for the Improvement in Fuel Economy of a Poppet Valve 2-Stroke Gasoline Engine Equipped with a Two-Stage Serial Charging System

2018-04-03
2018-01-0859
Engine downsizing is one of the most effective means to improve the fuel economy of spark ignition (SI) gasoline engines because of lower pumping and friction losses. However, the occurrence of knocking combustion or even low-speed pre-ignition at high loads is a severe problem. One solution to significantly increase the upper load range of a 4-stroke gasoline engine is to use 2-stroke cycle due to the double firing frequency at the same engine speed. It was found that a 0.7 L two-cylinder 2-stroke poppet valve gasoline engine equipped with a two-stage serial boosting system, comprising a supercharger and a downstream turbocharger, could replace a 1.6 L naturally aspirated 4-stroke gasoline engine in our previous research, but its fuel economy was close to that of the 4-stroke engine at upper loads due to knocking combustion.
Technical Paper

Performance and Analysis of a 4-Stroke Multi-Cylinder Gasoline Engine with CAI Combustion

2002-03-04
2002-01-0420
Controlled Auto-Ignition (CAI) combustion was realised in a production type 4-stroke 4-cylinder gasoline engine without intake charge heating or increasing compression ratio. The CAI engine operation was achieved using substantially standard components modified only in camshafts to restrict the gas exchange process The engine could be operated with CAI combustion within a range of load (0.5 to 4 bar BMEP) and speed (1000 to 3500 rpm). Significant reductions in both specific fuel consumption and CO emissions were found. The reduction in NOx emission was more than 93% across the whole CAI range. Though unburned hydrocarbons were higher under the CAI engine operation. In order to evaluate the potential of the CAI combustion technology, the European NEDC driving cycle vehicle simulation was carried out for two identical vehicles powered by a SI engine and a CAI/SI hybrid engine, respectively.
Technical Paper

Optimisation of In-Cylinder Flow for Fuel Stratification in a Three-Valve Twin-Spark-Plug SI Engine

2003-03-03
2003-01-0635
In-cylinder flow was optimised in a three-valve twin-spark-plug SI engine in order to obtain good two-zone fuel fraction stratification in the cylinder by means of tumble flow. First, the in-cylinder flow field of the original intake system was measured by Particle Image Velocimetry (PIV). The results showed that the original intake system did not produce large-scale in-cylinder flow and the velocity value was very low. Therefore, some modifications were applied to the intake system in order to generate the required tumble flow. The modified systems were then tested on a steady flow rig. The results showed that the method of shrouding the lower part of the intake valves could produce rather higher tumble flow with less loss of the flow coefficient than other methods. The optimised intake system was then consisted of two shroud plates on the intake valves with 120° angles and 10mm height. The in-cylinder flow of the optimised intake system was investigated by PIV measurements.
Journal Article

Numerical Study of the Effect of Piston Shapes and Fuel Injection Strategies on In-Cylinder Conditions in a PFI/GDI Gasoline Engine

2014-10-13
2014-01-2670
SI-CAI hybrid combustion, also known as spark-assisted compression ignition (SACI), is a promising concept to extend the operating range of CAI (Controlled Auto-Ignition) and achieve the smooth transition between spark ignition (SI) and CAI in the gasoline engine. In order to stabilize the hybrid combustion process, the port fuel injection (PFI) combined with gasoline direct injection (GDI) strategy is proposed in this study to form the in-cylinder fuel stratification to enhance the early flame propagation process and control the auto-ignition combustion process. The effect of bowl piston shapes and fuel injection strategies on the fuel stratification characteristics is investigated in detail using three-dimensional computational fluid dynamics (3-D CFD) simulations. Three bowl piston shapes with different bowl diameters and depths were designed and analyzed as well as the original flat piston in a single cylinder PFI/GDI gasoline engine.
Technical Paper

Numerical Study of Effects of Fuel Injection Timings on CAI/HCCI Combustion in a Four-Stroke GDI Engine

2005-04-11
2005-01-0144
The Controlled Auto-Ignition (CAI) combustion, also known as Homogeneous Charge Compression Ignition (HCCI) was achieved by trapping residuals with early exhaust valve closure in conjunction with direct injection. Multi-cycle 3D engine simulations have been carried out for parametric study on four different injection timings, in order to better understand the effects of injection timings on in-cylinder mixing and CAI combustion. The full engine cycle simulation including complete gas exchange and combustion processes was carried out over several cycles in order to obtain the stable cycle for analysis. The combustion models used in the present study are the Shell auto-ignition model and the characteristic-time combustion model, which were modified to take the high level of EGR into consideration. A liquid sheet breakup spray model was used for the droplet breakup processes.
Book

Laser Diagnostics and Optical Measurement Techniques in Internal Combustion Engines

2012-07-30
The increasing concern about CO2 emissions and energy prices has led to new CO2 emission and fuel economy legislation being introduced in world regions served by the automotive industry. In response, automotive manufacturers and Tier-1 suppliers are developing a new generation of internal combustion (IC) engines with ultra-low emissions and high fuel efficiency. To further this development, a better understanding is needed of the combustion and pollutant formation processes in IC engines. As efficiency and emission abatement processes have reached points of diminishing returns, there is more of a need to make measurements inside the combustion chamber, where the combustion and pollutant formation processes take place. However, there is currently no good overview of how to make these measurements.
Technical Paper

Investigation of advanced valve timing strategies for efficient spark ignition ethanol operation

2018-09-03
2018-36-0147
Biofuels for internal combustion engines have been explored worldwide to reduce fossil fuel usage and mitigate greenhouse gas emissions. Additionally, increased spark ignition (SI) engine part load efficiency has been demanded by recent emission legislation for the same purposes. Considering theses aspects, this study investigates the use of non-conventional valve timing strategies in a 0.35 L four valve single cylinder test engine operating with anhydrous ethanol. The engine was equipped with a fully variable valve train system enabling independent valve timing and lift control. Conventional spark ignition operation with throttle load control (tSI) was tested as baseline. A second valve strategy using dethrottling via early intake valve closure (EIVC) was tested to access the possible pumping loss reduction. Two other strategies, negative valve overlap (NVO) and exhaust rebreathing (ER), were investigated as hot residual gas trapping strategies using EIVC as dethrottling technique.
Technical Paper

Investigation of Split Injection in a Single Cylinder Optical Diesel Engine

2010-04-12
2010-01-0605
Over the last decade, the diesel engine has made dramatic progress in its performance and market penetration. However, in order to meet future emissions legislations, Nitrogen Oxides (NOx) and particulate matters' (PM) emissions will need to be reduced simultaneously. Nowadays researchers are focused on different combustion modes which can have a great potential for both low soot and low NOx. In order to achieve this, different injection strategies have been investigated. This study investigates the effects of split injection strategies with high levels of Exhaust Gas Recirculation (EGR) on combustion performance and emissions in a single-cylinder direct injection optical diesel engine. The investigation is focused on the effects of injection timing of split injection strategies. A Ricardo Hydra single-cylinder optical engine was used in which conventional experimental methods like cylinder pressure data, heat release analysis and exhaust emissions analysis were applied.
Journal Article

Investigation of Early and Late Intake Valve Closure Strategies for Load Control in a Spark Ignition Ethanol Engine

2017-03-28
2017-01-0643
The more strict CO2 emission legislation for internal combustion engines demands higher spark ignition (SI)engine efficiencies. The use of renewable fuels, such as bioethanol, may play a vital role to reduce not only CO2 emissions but also petroleum dependency. An option to increase SI four stroke engine efficiency is to use the so called over-expanded cycle concepts by variation of the valve events. The use of an early or late intake valve closure reduces pumping losses (the main cause of the low part load efficiency in SI engines) but decreases the effective compression ratio. The higher expansion to compression ratio leads to better use of the produced work and also increases engine efficiency. This paper investigates the effects of early and late intake valve closure strategies in the gas exchange process, combustion, emissions and engine efficiency at unthrottled stoichiometric operation.
Technical Paper

Investigation of EGR and Miller Cycle for NOx Emissions and Exhaust Temperature Control of a Heavy-Duty Diesel Engine

2017-10-08
2017-01-2227
In order to meet increasingly stringent emissions standards and lower the fuel consumption of heavy-duty (HD) vehicles, significant efforts have been made to develop high efficiency and clean diesel engines and aftertreatment systems. However, a trade-off between the actual engine efficiency and nitrogen oxides (NOx) emission remains to minimize the operational costs. In addition, the conversion efficiency of the diesel aftertreatment system decreases rapidly with lower exhaust gas temperatures (EGT), which occurs at low load operations. Thus, it is necessary to investigate the optimum combustion and engine control strategies that can lower the vehicle’s running costs by maintaining low engine-out NOx emissions while increasing the conversion efficiency of the NOx aftertreament system through higher EGTs.
Technical Paper

Investigation into the Effect of Injection Timing on Stoichiometric and Lean CAI Operations in a 4-Stroke GDI Engine

2006-04-03
2006-01-0417
The Controlled Auto-Ignition (CAI) combustion, also known as Homogeneous Charge Compression Ignition (HCCI) can be achieved by the negative valve overlap method in conjunction with direct injection in a four-stroke gasoline engine. A multi-cycle 3D engine simulation program has been developed and applied to study the effect of injection timing on CAI operations with lean and stoichiometric mixtures. The combustion models used in the present study are based on the modified Shell auto-ignition model and the characteristic-time combustion model. A liquid sheet breakup spray model was used for the droplet breakup processes. Based on the parametric studies on injection timing and equivalence ratio, the major difference between stoichiometric and lean-burn CAI operations is due to the fact that fuel injections take place during the negative valve overlap period.
Technical Paper

Investigation into Controlled Auto-Ignition Combustion in a GDI Engine with Single and Split Fuel Injections

2007-04-16
2007-01-0211
A multi-cycle three-dimensional CFD engine simulation programme has been developed and applied to analyze the Controlled autoignition (CAI) combustion, also known as homogeneous charge compression ignition (HCCI), in a direct injection gasoline engine. CAI operation was achieved through the negative valve overlap method by means of a set of low lift camshafts. The effect of single injection timing on combustion phasing and underlying physical and chemical processes involved was examined through a series of analytical studies using the multi-cycle 3D engine simulation programme. The analyses showed that early injection into the trapped burned gases of a lean-burn mixture during the negative valve overlap period had a large effect on combustion phasing, due to localized heat release and the production of chemically reactive species. As the injection was retarded to the intake stroke, the charge cooling effect tended to slow down the autoignition process.
X