Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Understanding the Chemical Effects of Increased Boost Pressure under HCCI Conditions

2008-04-14
2008-01-0019
One way to increase the load range in an HCCI engine is to increase boost pressure. In this modeling study, we investigate the effect of increased boost pressure on the fuel chemistry in an HCCI engine. Computed results of HCCI combustion are compared to experimental results in a HCCI engine. We examine the influence of boost pressure using a number of different detailed chemical kinetic models - representing both pure compounds (methylcyclohexane, cyclohexane, iso-octane and n-heptane) and multi-component models (primary reference fuel model and gasoline surrogate fuel model). We examine how the model predictions are altered by increased fueling, as well as reaction rate variation, and the inclusion of residuals in our calculations. In this study, we probe the low temperature chemistry (LTC) region and examine the chemistry responsible for the low-temperature heat release (LTHR) for wide ranges of intake boost pressure.
Technical Paper

Thermodynamic and Chemical Effects of EGR and Its Constituents on HCCI Autoignition

2007-04-16
2007-01-0207
EGR can be used beneficially to control combustion phasing in HCCI engines. To better understand the function of EGR, this study experimentally investigates the thermodynamic and chemical effects of real EGR, simulated EGR, dry EGR, and individual EGR constituents (N2, CO2, and H2O) on the autoignition processes. This was done for gasoline and various PRF blends. The data show that addition of real EGR retards the autoignition timing for all fuels. However, the amount of retard is dependent on the specific fuel type. This can be explained by identifying and quantifying the various underlying mechanisms, which are: 1) Thermodynamic cooling effect due to increased specific-heat capacity, 2) [O2] reduction effect, 3) Enhancement of autoignition due to the presence of H2O, 4) Enhancement or suppression of autoignition due to the presence of trace species such as unburned or partially-oxidized hydrocarbons.
Technical Paper

The Role of Low Temperature Chemistry in the Autoignition of N-Butane

1987-11-01
872108
We have studied the chemical aspects of the compression ignition of n-butane experimentally in a spark ignition engine and theoretically using computer simulations with a detailed chemical kinetic mechanism. The results of these studies demonstrate the effect of initial charge composition on autoignition. Experimentally, when the initial charge consisted of 80% fresh charge and 20% recycled products of combustion, we observed that autoignition was inhibited. On the other hand, charging with 80% fresh charge and 20% partial oxidation products from the previous motored cycle resulted in enhanced low-temperature chemistry (with the associated heat release and temperature increase) and autoignition. We assessed how well the detailed kinetic model could predict the autoignition and modified the model to better simulate the experimental observations. We also assessed how chemical preconditioning of the fuel-air charge affected the autoignition process.
Technical Paper

The Potential of HCCI Combustion for High Efficiency and Low Emissions

2002-06-03
2002-01-1923
Homogeneous Charge Compression Ignition (HCCI) engines can have efficiencies as high as compression-ignition, direct-injection (CIDI) engines (an advanced version of the commonly known diesel engine), while producing ultra-low emissions of oxides of nitrogen (NOx) and particulate matter (PM). HCCI engines can operate on gasoline, diesel fuel, and most alternative fuels. While HCCI has been demonstrated and known for quite some time, only the recent advent of electronic sensors and controls has made HCCI engines a potential practical reality. This paper provides a comprehensive overview of the current state-of-the-art in HCCI technology, estimates the potential benefits HCCI engines could bring to U.S. transportation vehicles, and lists the R&D barriers that need to be overcome before HCCI engines might be considered for commercial application.
Technical Paper

The Intensity of Knock in an Internal Combustion Engine: An Experimental and Modeling Study

1992-10-01
922327
Experimental data have been obtained that characterize knock occurrence times and knock intensities in a spark ignition engine operating on indolene and 91 primary reference fuel, as spark timing and inlet temperature were varied. Individual, in-cylinder pressure histories measured under knocking conditions were conditioned and averaged to obtain representative pressure traces. These averaged pressure histories were used as input to a reduced and detailed chemical kinetic model. The time derivative of CO concentration and temperature were correlated with the measured knock intensity and percent cycles knocking. The goal was to evaluate the potential of using homogenous, chemical kinetic models as predictive tools for knock intensity.
Technical Paper

The Influence of Fuel Volatility on the Liquid-Phase Fuel Penetration in a Heavy-Duty D.I. Diesel Engine

1998-02-23
980510
The objective of this investigation is to verify and characterize the influence of fuel volatility on maximum liquid-phase fuel penetration for a variety of actual Diesel fuels under realistic Diesel engine operating conditions. To do so, liquid-phase fuel penetration was measured for a total of eight Diesel fuels using laser elastic-scatter imaging. The experiments were carried out in an optically accessible Diesel engine of the “heavy-duty” size class at a representative medium speed (1200 rpm) operating condition. In addition to liquid-phase fuel penetration, ignition delay was assessed for each fuel based on pressure-derived apparent heat release rate and needle lift data. For all fuels examined, it was observed that initially the liquid fuel penetrates almost linearly with increasing crank angle until reaching a maximum characteristic length. Beyond this characteristic length, the fuel is entirely vapor phase and not just smaller fuel droplets.
Technical Paper

The Effects of Simulated EGR via Intake Air Dilution on Combustion in an Optically Accessible DI Diesel Engine

1993-10-01
932798
An experiment was performed using an optically accessible direct injection (DI) diesel engine to investigate the effects of exhaust gas recirculation (EGR) on diesel combustion. EGR was simulated using nitrogen and carbon dioxide as intake air diluents. Timing was adjusted to maintain constant start of combustion for all cases. Both diluents were found to be effective in reducing emissions of oxides of nitrogen. Soot emission was not changed by the addition of nitrogen; however, carbon dioxide substantially reduced soot emission while simultaneously reducing NOx emissions. NOx is reduced by intake air dilution is a change in flame temperature.
Technical Paper

The Effects of Injection Timing and Diluent Addition on Late-Combustion Soot Burnout in a DI Diesel Engine Based on Simultaneous 2-D Imaging of OH and Soot

2000-03-06
2000-01-0238
The effects of injection timing and diluent addition on the late-combustion soot burnout in a direct-injection (DI) diesel engine have been investigated using simultaneous planar imaging of the OH-radical and soot distributions. Measurements were made in an optically accessible DI diesel engine of the heavy-duty size class at a 1680 rpm, high-load operating condition. A dual-laser, dual-camera system was used to obtain the simultaneous “single-shot” images using planar laser-induced fluorescence (PLIF) and planar laser-induced incandescence (PLII) for the OH and soot, respectively. The two laser beams were combined into overlapping laser sheets before being directed into the combustion chamber, and the optical signal was separated into the two cameras by means of an edge filter.
Technical Paper

The Effect of TDC Temperature and Density on the Liquid-Phase Fuel Penetration in a D. I. Diesel Engine*

1995-10-01
952456
A parametric study of the liquid-phase fuel penetration of evaporating Diesel fuel jets has been conducted in a direct-injection Diesel engine using laser elastic-scatter imaging. The experiments were conducted in an optically accessible Diesel engine of the “heavy-duty” size class at a representative medium speed (1200 rpm) operating condition. The density and temperature at TDC were varied systematically by adjusting the intake temperature and pressure. At all operating conditions the measurements show that initially the liquid fuel penetrates almost linearly with increasing crank angle until reaching a maximum length. Then, the liquid-fuel penetration length remains fairly constant although fuel injection continues. At a TDC density of 16.6 kg/m3 and a temperature of about 1000 K the maximum penetration length is approximately 23 mm. However, it varies significantly as TDC conditions are changed, with the liquid-length being less at higher temperatures and at higher densities.
Technical Paper

The Effect of Platinum Catalysts on Propane Oxidation at Elevated Pressure

1988-10-01
881614
The potential for catalytically enhanced ignition in low-heat rejection Diesel engines has been experimentally studied under engine simulated conditions in a high pressure chemical flow reactor. Results are presented for propane oxidation on platinum at 6 and 10 atmospheres, at temperatures from 800K to 1050K, and at equivalence ratios from 0.5 to 4.0. For turbulent transport rates which are typical of those in an engine, as much as 20% of the fuel was found to react on the catalyst before the onset of the gas-phase ignition reactions. Depending on the adiabaticity of the combustion chamber walls, this could lead to significant thermal enhancement of the gas-phase ignition process. Evidence of chemical enhancement was also observed, at 10 atm under very fuel rich conditions, in terms of a change in the concentration and distribution of the hydrocarbon intermediate species. Possible mechanisms for the observed chemical enhancement due to surface generated species are discussed.
Technical Paper

The Effect of Intake Charge Temperature on Combustion and Emissions in an Optically Accessible DI Diesel Engine with and without Swirl

1990-10-01
902060
An optically accessible D] Diesel engine has been constructed tostudy combustion, emission, spray, and flow field phenomena. The goal of the present investigation is tostudy the effect that intake charge temperature variation at constant density has on combustion, emissions, and spray vaporization in both quiescent and swirling environments. The results indicate that raising intake temperatures decreased the ignition delay, peak rate of premixed burning, and premixed fraction. Increasing intake temperature increased the peak rate of diffusion burning in the quiescent environment, but mixing effects balanced temperature effects in the swirl environment and peak diffusion burning remained constant. In general, NOx increased with increasing temperature and amount of diffusion burning, but lower temperature data suggests that premixed and diffusion burning are both contributing to NO production.
Technical Paper

The Effect of Hydrotreatment of Coal-Derived Synthetic Fuels on Dl Diesel Emissions and Performance

1989-09-01
892132
The performance, combustion, and emissions of three coal-derived, test fuels were compared to a Phillips D-2 control fuel in a single cylinder, direct-injected, Diesel engine. The three synthetic test fuels were formed by varying the degree of hydrotreatment of a coal-liquid produced from the Exxon Donor Solvent (EDS) process; the three fuels have Cetane numbers of 29, 34.2, and 38.2. The objective of this research was to examine the effect of the degree of hydrotreatment on combustion, performance, and emission characteristics. The emissions measurements included both gas-phase emissions (CO, NOx, unburned hydrocarbons, and aldehydes), and particulate emissions. In addition, the Ames test was used to analyze the mutagenic activity of the soluble organic compounds found in the exhaust particulate.
Technical Paper

The Effect of Fuel Composition and Engine Deposits on Emissions from a Spark Ignition Engine

1993-10-01
932707
Chemically defined binary fuel mixtures of iso-octane (baseline fuel), toluene, methyl tertiary butyl ether (MTBE), and di-isobutylene (DIB) have been run in a production spark ignition engine at various speed/load conditions, with the engine in a clean (deposit-free) and deposited state. Pre-catalyst exhaust gases were analyzed for NOx, total unburned hydrocarbons (UHC), and speciated unburned hydrocarbon concentrations. As toluene was added to the baseline fuel, NOx concentrations increased but total unburned hydrocarbons remained constant. Total unburned hydrocarbons and NOx were unaffected by MTBE. DIB reduced total unburned hydrocarbon emissions but had little effect on NOx. Pure iso-octane produced seven major unburned hydrocarbon species. All the fuels when added to iso-octane resulted in changes in the existing species as well as the production of new ones.
Technical Paper

The Effect of Aromatics and Cycloparaffins on Dl Diesel Emissions

1989-09-01
892130
The effects of the chemical composition of Diesel fuels on emissions is a critical issue for future Diesel fuels and synthetic fuels. In order to understand these effects, a series of fuels prepared from blends of pure hydrocarbons were studied in a single cylinder, DI Diesel engine. The base fuel was a 2:1 mixture by volume of iso-octane and tetradecane with a Cetane number of 40.5. The additive compounds chosen for this study were 1-methylnaphthalene, tetralin, and decalin; each additive was blended into the base fuel at several concentrations so that the effect of the chemical compound on emission trends could be determined. To minimize changes in the combustion process, as fuel composition changed, the injection timing was varied in order to adjust for Cetane number differences between fuels. Comparisons were made on the basis of performance, regulated exhaust emissions, including CO, NOx UHC, and particulates, aldehyde emissions, and soluble organic fraction.
Technical Paper

The Autoignition of Isobutane in a Knocking Spark Ignition Engine

1987-02-01
870169
The chemical aspects of the autoignition of isobutane are studied experimentally in a spark ignition engine and theoretically using computer simulations with a detailed chemical kinetic mechanism. The results of these studies show that even with the relatively knock-resistant fuel, isobutane, there is still a significant amount of fuel breakdown in the end gas with a resulting heat release and temperature increase. The ability of the detailed kinetic model to predict this low temperature chemical activity is assessed and the model is modified to simulate more closely the experimental observations. We address the basic question of whether this first stage of combustion accounts for a chemical preconditioning of the end gas that leads to the autoignition; or whether it merely provides sufficient heat release in the end gas that high temperature autoignition is initiated.
Technical Paper

Spatial Analysis of Emissions Sources for HCCI Combustion at Low Loads Using a Multi-Zone Model

2004-06-08
2004-01-1910
We have conducted a detailed numerical analysis of HCCI engine operation at low loads to investigate the sources of HC and CO emissions and the associated combustion inefficiencies. Engine performance and emissions are evaluated as fueling is reduced from typical HCCI conditions, with an equivalence ratio ϕ = 0.26 to very low loads (ϕ = 0.04). Calculations are conducted using a segregated multi-zone methodology and a detailed chemical kinetic mechanism for iso-octane with 859 chemical species. The computational results agree very well with recent experimental results. Pressure traces, heat release rates, burn duration, combustion efficiency and emissions of hydrocarbon, oxygenated hydrocarbon, and carbon monoxide are generally well predicted for the whole range of equivalence ratios. The computational model also shows where the pollutants originate within the combustion chamber, thereby explaining the changes in the HC and CO emissions as a function of equivalence ratio.
Technical Paper

Soot and Fuel Distributions in a D.I. Diesel Engine via 2-D Imaging

1992-10-01
922307
Soot and fuel distributions have been studied in an optically accessible direct-injection diesel engine of the “heavy-duty” size class. Laser-induced incandescence (LII) was used to study the effects of changes in the engine speed on the in-cylinder soot distribution, and elastic (Mie) scattering and laser-induced fluorescence (LIF) were used to examine the fuel distribution. The investigation showed that, in this engine, soot is distributed throughout the cross section of the combusting region of the fuel jet for engine speeds ranging from 600 to 1800 rpm. No indication was found that soot occurs preferentially around the periphery of the plume. The LII images showed that the soot concentration decreases with increasing engine speed and injection pressure, and that the soot distribution extends much further upstream (toward the injector) at the lower engine speeds than at higher speeds.
Technical Paper

Soot Distribution in a D.I. Diesel Engine Using 2-D Laser-Induced Incandescence Imaging

1991-02-01
910224
Laser-induced incandescence (LII) has been explored as a diagnostic for qualitative two-dimensional imaging of the in-cylinder soot distribution in a diesel engine. Advantages of LII over elastic-scatter soot imaging techniques include no interfering signals from liquid fuel droplets, easy rejection of laser light scattered by in-cylinder surfaces, and the signal intensity being proportional to the soot volume fraction. LII images were obtained in a 2.3-liter, single cylinder, direct-injection diesel engine, modified for optical access. To minimize laser sheet and signal attenuation (which can affect almost any planar imaging technique applied to diesel engine combustion), a low-sooting fuel was used whose vaporization and combustion characteristics are typical of standard diesel fuels. Temporal and spatial sequences of LII images were made which show the extent of the soot distribution within the optically accessible portion the combusting spray plume.
Technical Paper

Soot Distribution in a D.I. Diesel Engine Using 2-D Imaging of Laser-induced Incandescence, Elastic Scattering, and Flame Luminosity

1992-02-01
920115
A combusting plume in an optically accessible direct-injection diesel engine was studied using simultaneous 2-D imaging of laser-induced incandescence (LII) and natural flame luminosity, as well as simultaneous 2-D imaging of LII and elastic scattering. Obtaining images simultaneously via two different techniques makes the effects of cycle-to-cycle variation identical for both images, permitting the details of the simultaneous images to be compared. Since each technique provides unique information about the combusting diesel plume, more can be learned from comparison of the simultaneous images than by any of the techniques alone. Among the insights gained from these measurements are that the combusting plume in this engine has a general pattern of high soot concentration towards the leading edge with a lower soot concentration extending upstream towards the injector. Also, the soot particles are found to be larger towards the leading edge of the plume than in the upstream region.
Technical Paper

Smoothing HCCI Heat-Release Rates Using Partial Fuel Stratification with Two-Stage Ignition Fuels

2006-04-03
2006-01-0629
This work explores the potential of partial fuel stratification to smooth HCCI heat-release rates at high load. A combination of engine experiments and multi-zone chemical-kinetics modeling was used for this. The term “partial” is introduced to emphasize that care is taken to supply fuel to all parts of the in-cylinder charge, which is essential for reaching high power output. It was found that partial fuel stratification offers good potential to achieve a staged combustion event with reduced pressure-rise rates. Therefore, partial fuel stratification has the potential to increase the high-load limits for HCCI/SCCI operation. However, for the technique to be effective the crank-angle phasing of the “hot” ignition has to be sensitive to the local ϕ. Sufficient sensitivity was observed only for fuel blends that exhibit low-temperature heat release (like diesel fuel).
X