Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

“OPERAS” In Advanced Diesel Engines for Commercial and Military Applications

2006-04-03
2006-01-0927
Advanced diesel engines developed for the commercial market need to be adapted to the military requirements by OPERAS (Optimizing the injection pressure P, the Exhaust gas recirculation E, injection events Retard and/or Advance and the swirl ratio S). The different after treatment devices, already used or expected to be applied to diesel engines, require feed gases of appropriate properties for their efficient operation. To produce these gases some OPERAS are needed to control the diesel combustion process. Since military vehicles do not need the after treatment devices, the OPERAS of the commercial engines should be modified to meet the military requirements for high power density, better fuel economy, reduction of parasitic losses caused by the cooled EGR system, and reduction of invisible black and white smoke in the field.
Technical Paper

White Smoke Emissions Under Cold Starting of Diesel Engines

1996-02-01
960249
More stringent regulations have been enforced over the past few years on diesel exhaust emissions. White smoke emission, a characteristic of diesel engines during cold starting, needs to be controlled in order to meet these regulations. This study investigates the sources and constituents of white smoke. The effects of fuel properties, design and operating parameters on the formation and emissions of white smoke are discussed. A new technique is developed to measure the real time gaseous hydrocarbons (HC) as well as the solid and liquid particulates. Experiments were conducted on a single cylinder direct injection diesel engine in a cold room. The gaseous HC emissions are measured using a high frequency response flame ionization detector. The liquid and solid particulates are collected on a paper filter placed upstream of the sampling line of the FID and their masses are determined.
Technical Paper

Tribological Systems for High Temperature Diesel Engines

1987-02-01
870157
The U.S. Army Tank-Automotive Command is developing a future high power, low heat rejection military diesel engine. Performance requirements for the engine result in a predicted cylinder wall temperature of 560°C at the top piston ring reversal location. Thermal stresses imposed on the lubricant will therefore be unusually severe. Midwest Research Institute is developing the tribological system for this engine. A new general concept for high temperature diesel engine lubrication has been formulated. Our concept includes advanced synthetic liquid lubricants, solid lubricant additives, and self-lubricating materials. The lubricants, additives, and materials that have been selected for initial laboratory and engine evaluations of the concept are reported here.
Journal Article

Transient Fluid Flow and Heat Transfer in the EGR Cooler

2008-04-14
2008-01-0956
EGR is a proven technology used to reduce NOx formation in both compression and spark ignition engines by reducing the combustion temperature. In order to further increase its efficiency the recirculated gases are subjected to cooling. However, this leads to a higher load on the cooling system of the engine, thus requiring a larger radiator. In the case of turbocharged engines the large variations of the pressures, especially in the exhaust manifold, produce a highly pulsating EGR flow leading to non-steady-state heat transfer in the cooler. The current research presents a method of determining the pulsating flow field and the instantaneous heat transfer in the EGR heat exchanger. The processes are simulated using the CFD code FIRE (AVL) and the results are subjected to validation by comparison with the experimental data obtained on a 2.5 liter, four cylinder, common rail and turbocharged diesel engine.
Technical Paper

Thermal Barrier Coatings for Monolithic Ceramic Low Heat Rejection Diesel Engine Components

2000-03-06
2000-01-1236
The future of maintaining a superior mobile military ground vehicle fleet rests in high power density propulsion systems. As the U.S. Government desires to convert its powerplant base to heavy fuel operation, there arises the opportunity to incorporate new advanced materials into these heavy fuel engines. These newer materials serve the purpose of decreasing powerplant weight and develop new component designs to take advantage of improved strength and temperature capability of those materials. In addition, the military continues the effort for a non-watercooled Low Heat Rejection (LHR) diesel engine. This type of engine demands the use of ceramic and advanced ceramic composite material hardware. Furthermore, today's higher pressure fuel injection systems, coupled with reduced air/fuel ratio as a means of increasing horsepower to size and weight, will require thermal protection or change in material specification for many of the engine's components.
Technical Paper

Thermal Barrier Coatings for High Output Turbocharged Diesel Engine

2007-04-16
2007-01-1442
Thermal barrier coatings (TBC) are perceived as enabling technology to increase low heat rejection (LHR) diesel engine performance and improve its longevity. The state of the art of thermal barrier coating is the plasma spray zirconia. In addition, other material systems have been investigated for the next generation of thermal barrier coatings. The purpose of this TBC program is to focus on developing binder systems with low thermal conductivity materials to improve the coating durability under high load and temperature cyclical conditions encountered in the real engine. Research and development (R&D) and analysis were conducted on aluminum alloy piston for high output turbocharged diesel engine coated with TBC.
Technical Paper

Simulation-Based Cold-Start Control Strategy for a Diesel Engine with Common Rail Fuel System at Different Ambient Temperatures

2007-04-16
2007-01-0933
A new tool has been used to arrive at appropriate split injection strategy for reducing the cranking period during the cold start of a multi-cylinder engine at decreasing ambient temperatures. The concept behind this tool is that the combination of different injection parameters that produce the highest IMEP should be able to improve the cold startability of the diesel engine. In this work the following injection parameters were considered: 1) injection timing, 2) split injection fraction, 3) dwell time and 4) total fuel mass injected per cycle. A commercial engine cyclic simulation code has been modified for diesel engine cycle simulation at lower ambient temperatures. The code was used to develop IMEP control maps. The maps were used to identify the parameters that would give the best IMEP. The strategies that have been identified have been validated experimentally in a multi-cylinder diesel engine equipped with a common rail fuel injection system.
Technical Paper

Simulation of Diesel Engines Cold-Start

2003-03-03
2003-01-0080
Diesel engine cold-start problems include long cranking periods, hesitation and white smoke emissions. A better understanding of these problems is essential to improve diesel engine cold-start. In this study computer simulation model is developed for the steady state and transient cold starting processes in a single-cylinder naturally aspirated direct injection diesel engine. The model is verified experimentally and utilized to determine the key parameters that affect the cranking period and combustion instability after the engine starts. The behavior of the fuel spray before and after it impinges on the combustion chamber walls was analyzed in each cycle during the cold-start operation. The analysis indicated that the accumulated fuel in combustion chamber has a major impact on engine cold starting through increasing engine compression pressure and temperature and increasing fuel vapor concentration in the combustion chamber during the ignition delay period.
Technical Paper

Simulation of Combustion in Direct-Injection Low Swirl Heavy-Duty Type Diesel Engines

1999-03-01
1999-01-0228
A two phase, global combustion model has been developed for quiescent chamber, direct injection diesel engines. The first stage of the model is essentially a spark ignition engine flame spread model which has been adapted to account for fuel injection effects. During this stage of the combustion process, ignition and subsequent flame spread/heat release are confined to a mixing layer which has formed on the injected jet periphery during the ignition delay period. Fuel consumption rate is dictated by mixing layer dynamics, laminar flame speed, large scale turbulence intensity, and local jet penetration rate. The second stage of the model is also a time scale approach which is explicitly controlled by the global mixing rate. Fuel-air preparation occurs on a large-scale level throughout this phase of the combustion process with each mixed fuel parcel eventually burning at a characteristic time scale as dictated by the global mixing rate.
Technical Paper

Relationships Between Exhaust Smoke Emissions and Operating Variables in Diesel Engines

1977-02-01
770718
The study relates air/fuel ratio, fuel injection timing, and engine speed to exhaust smoke levels and performance of the diesel engine. Additional data were obtained under supercharged and turbocharged inlet air conditions to investigate the applicability of the derived relationships under these conditions. Limited data using a variance in fuel type were obtained. Insight into the basic mechanism of smoke formation in diesel engines was gained. The relative percentages of fuel injected before ignition (i.e., premixed fuel) and after initiation of combustion (i.e., unmixed diffusion burning fuel) were found to be extremely significant in determining smoke levels. A smoke factor (the ratio of equivalence ratio in the combustion chamber at initial ignition to overall equivalence ratio) was formulated and found to be useful in predicting smoke phenomena in diesel engines.
Technical Paper

Performance of a Ceramic Rotor in a Cummins T46 Turbocharger

1984-02-01
840014
This paper documents the successful operation of a modified Cummins T46 turbocharger with a ceramic rotor. This turbocharger is modified to incorporate a 4.6 inch diameter ceramic turbine rotor (pressureless sintered silicon nitride) on the hot end. These results document the most complete ceramic turbine rotor performance map, for a large ceramic turbocharger rotor, available to date.
Technical Paper

Performance Assessment of US. Army Truck with Adiabatic Diesel Engine

1989-02-01
890142
An investigation into the fuel economy of a U.S. Army M813 5-ton truck with an “adiabatic” (uncooled) 14 liter (855 in3) diesel engine was made with three different driving schedules. The results were used to verify a newly written vehicle simulation. This simulation was used to compare the fuel economy of an uncooled turbocharged engine, a water cooled turbocharged engine, and a water cooled naturally aspirated engine in the same vehicle. Results indicate that, depending on the duty cycle a 16% to 37% improvement in fuel economy (depending on the duty cycle) can be achieved with an uncooled engine in this vehicle.
Journal Article

Particulate Matter Characterization Studies in an HSDI Diesel Engine under Conventional and LTC Regime

2008-04-14
2008-01-1086
Several mechanisms are discussed to understand the particulate matter (PM) characterization in a high speed, direct injection, single cylinder diesel engine using low sulfur diesel fuel. This includes their formation, size distribution and number density. Experiments were conducted over a wide range of injection pressures, EGR rates, injection timings and swirl ratios, therefore covering both conventional and low temperature combustion regimes. A micro dilution tunnel was used to immediately dilute a small part of the exhaust gases by hot air. A Scanning Mobility Particle Sizer (SMPS) was used to measure the particulate size distribution and number density. Particulate mass was measured with a Tapered Element Oscillating Microbalance (TEOM). Analysis was made of the root cause of PM characterization and their relationship with the combustion process under different operating conditions.
Technical Paper

Optical and Numerical Investigation of Pre-Injection Reactions and Their Effect on the Starting of a Diesel Engine

2009-04-20
2009-01-0648
Ultraviolet chemiluminescence has been observed in a diesel engine cyclinder during compression, but prior to fuel injection under engine starting conditions. During a portion of the warm-up sequence, the intensity of this emission exhibits a strong correlation to the phasing of the subsequent combustion. Engine exhaust measurements taken from a continuously misfiring, motored engine confirm the generation of formaldehyde (HCHO) in such processes. Fractions of this compound are expected to be recycled as residual to participate in the following combustion cycle. Spectral measurements taken during the compression period prior to fuel injection match the features of Emeleus' cool flame HCHO bands that have been observed during low temperature heat release reactions occurring in lean HCCI combustion. That the signal from the OH* bands is weak implies a buildup of HCHO during compression.
Technical Paper

New Integrated “O.P.E.R.A.S.” Strategies for Low Emissions in HSDI Diesel Engines

2003-03-03
2003-01-0261
Integrated control strategies for the O.P.E.R.A.S. (Optimization of injection Pressure, EGR ratio, injection Retard or Advance and Swirl ratio) are demonstrated. The strategies are based on an investigation of combustion and emissions in a small bore, high speed, direct injection diesel engine. The engine is equipped with a common rail injection system and is tested under simulated turbocharged engine conditions at two loads and speeds that represent two key operating points in a medium size HEV vehicle. A new phenomenological model is developed for the fuel distribution in the combustion chamber and the fractions that are injected prior to the development of the flame, injected in the flame or deposited on the walls. The investigation covered the effect of the different operating parameters on the fuel distribution, combustion and engine-out emissions.
Technical Paper

Modeling and Measurement of Tribological Parameters between Piston Rings and Liner in Turbocharged Diesel Engine

2007-04-16
2007-01-1440
This paper presents tribological modeling, experimental work, and validation of tribology parameters of a single cylinder turbocharged diesel engine run at various loads, speeds, intake boost pressures, and cylinder liner temperatures. Analysis were made on piston rings and liner materials, rings mechanical and thermal loads, contact pressure between rings and liner, and lubricant conditions. The engine tribology parameters were measured, and used to validate the engine tribology models. These tribology parameters are: oil film thickness, coefficient of friction between rings and liner, friction force, friction power, friction torque, shear rate, shear stress and wear of the sliding surfaces. In order to measure the oil film thickness between rings and liner, a single cylinder AVL turbocharged diesel engine was instrumented to accept the difference in voltage drop method between rings, oil film, and liner.
Technical Paper

Microscopic Characterization of Diesel Sprays at VCO Nozzle Exit

1998-10-19
982542
A long-distance microscope with pulse-laser as optical shutter up to 25kHz was used to magnify the diesel spray at the nozzle hole vicinity onto 35-mm photographic film through a still or a high-speed drum camera. The injectors examined are high-pressure valve-covered-orifice (VCO) nozzles, from unit injector and common rail injection systems. For comparison, a mini-sac injector from a hydraulic unit injector is also investigated. A phase-Doppler particle analyzer (PDPA) system with an external digital clock was also used to measure the droplet size, velocity and time of arrival relative to the start of the injection event. The visualization results provide very interesting and dynamic information on spray structure, showing spray angle variations, primary breakup processes, and spray asymmetry not observed using conventional macroscopic visualization techniques.
Technical Paper

Lower Temperature Limits for Cold Starting of Diesel Engine with a Common Rail Fuel Injection System

2007-04-16
2007-01-0934
One of the most challenging problems in diesel engines is to reduce unburned HC emissions that appear as (white smoke) during cold starting. In this paper the research is carried out on a 4-cylinder diesel engine with a common rail fuel injection system, which is able to deliver multiple injections during cold start. The causes of combustion failure at lower temperature limits are investigated theoretically by considering the rate of heat release. The results of this clearly indicate that in addition to low cranking engine speed, heat transfer and blow-by losses at lower ambient temperatures, fuel injection events would contribute to the failure of combustion. Also, combustion failure takes place when the compression temperature is lower than some critical value. Based on these results, split-main injection strategy was applied during engine cold starting and validated by experiments in a cold room at lower ambient temperatures.
Technical Paper

Low Heat Rejection From High Output Ceramic Coated Diesel Engine and Its Impact on Future Design

1993-03-01
931021
A high output experimental single cylinder diesel engine that was fully coated and insulated with a ceramic slurry coated combustion chamber was tested at full load and full speed. The cylinder liner and cylinder head mere constructed of 410 Series stainless steel and the top half of the articulated piston and the cylinder head top deck plate were made of titanium. The cylinder liner, head plate and the piston crown were coated with ceramic slurry coating. An adiabaticity of 35 percent was predicted for the insulated engine. The top ring reversal area on the cylinder liner was oil cooled. In spite of the high boost pressure ratio of 4:1, the pressure charged air was not aftercooled. No deterioration in engine volumetric efficiency was noted. At full load (260 psi BMEP) and 2600 rpm, the coolant heat rejection rate of 12 btu/hp.min. was achieved. The original engine build had coolant heat rejection of 18.3 btu/hp-min and exhaust energy heat rejection of 42.3 btu/hp-min at full load.
Technical Paper

Laboratory Development and Engine Performance of New High-Temperature Diesel Engine Lubricants

1989-02-01
890145
New high-temperature lubricants are being developed for future U.S. Army low heat rejection diesel engines. Compared to the best previous low heat rejection diesel engine lubricant, the first new lubricant developed was shown to (1) be less volatile, (2) have 55°C (100°F) greater oxidative stability, and (3) increase high-temperature single cylinder engine life more than five times. The new lubricant successfully completed a 400 hr multicylinder engine test in a U.S. Army 5-ton truck adiabatic engine. Lubricant property changes, engine wear, deposits and oil consumption were all very low. Two additional new liquid lubricants were developed for operation at higher engine temperatures than those of the 5-ton truck. Engine tests of these new lubricants will be conducted in the near future. Hybrid liquid/solid lubricants were formulated and evaluated for potential reduction of wear and friction at high temperature, with mixed results.
X