Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

100 Hour Endurance Testing of a High Output Adiabatic Diesel Engine

1994-03-01
940951
An advanced low heat rejection engine concept has successfully completed a 100 hour endurance test. The combustion chamber components were insulated with thermal barrier coatings. The engine components included a titanium piston, titanium headface plate, titanium cylinder liner insert, M2 steel valve guides and monolithic zirconia valve seat inserts. The tribological system was composed of a ceramic chrome oxide coated cylinder liner, chrome carbide coated piston rings and an advanced polyolester class lubricant. The top piston compression ring Included a novel design feature to provide self-cleaning of ring groove lubricant deposits to prevent ring face scuffing. The prototype test engine demonstrated 52 percent reduction in radiator heat rejection with reduced intake air aftercooling and strategic forced oil cooling.
Technical Paper

A Coupled Methodology for Modeling the Transient Thermal Response of SI Engines Subject to Time-Varying Operating Conditions

1997-05-19
971859
A comprehensive methodology for predicting the transient thermal response of spark-ignition engines subject to time-varying boundary conditions is presented. The approach is based on coupling a cycle-resolved quasi-dimensional simulation of in-cylinder thermodynamic events with a resistor-capacitor (R-C) thermal network of the various component and fluid interactions throughout the engine and exhaust system. The dynamic time step of the thermal solution is limited by either the frequency of the prescribed time-dependent boundary conditions or by the minimum thermal time constant of the R-C network. To demonstrate the need for fully-coupled, transient thermodynamic and heat transfer solutions, model behavior is first explored for step-change and staircase variations of engine operating conditions.
Technical Paper

A Large Scale Mixing Model for a Quiescent Chamber Direct Injection Diesel

1996-02-01
961040
The methodology for predicting the transient mixing rate is presented for a direct injection, quiescent chamber diesel. The mixing process is modeled as a zero-dimensional, large-scale phenomena which accounts for injection rate, cylinder geometry, and engine operating condition. As a demonstration, two different injection schemes were investigated for engine speeds of 1600, 2100, and 2600 rpm. In the first case, the air-fuel ratio was fixed while the injection rate was allowed to vary, but for the second case, the injection duration was fixed and the air-fuel ratio was allowed to vary. For the former case, the resulting mixing rate was also compared with the experimentally determined fuel burning rate. These two quantities appeared to be correlated in some manner for the various engine speeds under investigation.
Technical Paper

A Methodology for Cycle-By-Cycle Transient Heat Release Analysis in a Turbocharged Direct Injection Diesel Engine

2000-03-06
2000-01-1185
This study presents a systematic methodology for performing transient heat release analysis in a diesel engine. Novel techniques have been developed to infer the mass of air trapped in the cylinder and the mass of fuel injected on a cycle-by-cycle basis. The cyclic mass of air trapped in the cylinder is found accounting for pressure gradients, piston motion and short-circuiting during the valve overlap period. The cyclic mass of fuel injected is computed from the injection pressure history. These parameters are used in conjunction with cycle-resolved pressure data to accurately define the instantaneous thermodynamic state of the mixture. This information is used in the calculation and interpretation of transient heat release profiles.
Technical Paper

A New Ignition Delay Formulation Applied to Predict Misfiring During Cold Starting of Diesel Engines

2000-03-06
2000-01-1184
A new formulation is developed for the ignition delay (ID) in diesel engines to account for the effect of piston motion on the global autoignition reaction rates. A differentiation is made between the IDe measured in engines and IDv, measured in constant volume vessels. In addition, a method is presented to determine the coefficients of the IDe correlation from actual engine experimental data. The new formulation for IDe is applied to predict the misfiring cycles during the cold starting of diesel engines at different low ambient temperatures. The predictions are compared with experimental results obtained on a multi-cylinder heavy-duty diesel engine.
Technical Paper

A Prototype Thin-Film Thermocouple for Transient Heat Transfer Measurements in Ceramic-Coated Combustion Chambers

1990-02-01
900691
A prototype chromel-alumel overlapping thin-film thermocouple (TFTC) has been developed for transient heat transfer measurements in ceramic-coated combustion chambers. The TFTC has been evaluated using various metallurgical techniques such as scanning electron microscopy, energy dispersive x-ray detection, and Auger electron spectroscopy. The sensor was calibrated against a standard thermocouple in ice, boiling water, and a furnace at 1000°C. The microstructural and chemical analysis of the thin-films showed the alumel film composition was very similar to the bulk material, while the chromel film varied slightly. An initial set of ceramic plug surface temperatures was taken while motoring and firing the engine at 1900 rpm to verify thermocouple operation. The data shows a 613 K mean temperature and a 55 K swing for the ceramic surface compared with a 493 K mean temperature and a 20 K swing for the metal surface at the same location.
Technical Paper

A Telemetry Linkage System for Piston Temperature Measurements in a Diesel Engine

1991-02-01
910299
A telemetry linkage system has been developed for piston temperature measurements in a direct-injection diesel engine. In parallel with the development of the telemetry linkage system, fast response thermocouples were installed at three piston locations - two on the bowl surface and one on the crown surface. A novel design was used to achieve electrical continuity between the piston and the connecting rod by means of a flexible steel strap pivoted on the piston skirt. The telemetry linkage system was then used to transport the electrical wires from the thermocouples to the external data acquisition system. A series of tests was run to determine the effects of location and load on piston surface temperatures. Surface temperature profiles varied substantially among the three locations, reflecting the differences in the combustion and heat flow characteristics of their surrounding regions.
Technical Paper

Adiabatic Engine Trends-Worldwide

1987-02-01
870018
Since the early inception of the adiabatic diesel engine in 1974, marked progress has taken place as a result of research efforts performed all over the world. The use of ceramics for heat engines in production applications has been limited to date, but is growing. Ceramic use for production heat engine has included: combustion prechambers, turbochargers, exhaust port liners, top piston ring inserts, glow plugs, oxygen sensors; and additional high temperature friction and wear components. The potential advantages of an adiabatic engine vary greatly with specific application (i.e., commercial vs. military, stationary vs. vehicular, etc.), and thus, a better understanding of the strengths and weaknesses (and associated risks) of advanced adiabatic concepts with respect to materials, tribology, cost, and payoff must be obtained.
Technical Paper

Advanced Low Temperature Combustion (ALTC): Diesel Engine Performance, Fuel Economy and Emissions

2008-04-14
2008-01-0652
The objective of this work is to develop a strategy to reduce the penalties in the diesel engine performance, fuel economy and HC and CO emissions, associated with the operation in the low temperature combustion regime. Experiments were conducted on a research high speed, single cylinder, 4-valve, small-bore direct injection diesel engine equipped with a common rail injection system under simulated turbocharged conditions, at IMEP = 3 bar and engine speed = 1500 rpm. EGR rates were varied over a wide range to cover engine operation from the conventional to the LTC regime, up to the misfiring point. The injection pressure was varied from 600 bar to 1200 bar. Injection timing was adjusted to cover three different LPPCs (Location of the Peak rate of heat release due to the Premixed Combustion fraction) at 10.5° aTDC, 5 aTDC and 2 aTDC. The swirl ratio was varied from 1.44 to 7.12. Four steps are taken to move from LTC to ALTC.
Technical Paper

Advancements in High Temperature Cylinder Liner and Piston Ring Tribology

2000-03-06
2000-01-1237
The high temperature tribology issue for uncooled Low Heat Rejection (LHR) diesel engines where the cylinder liner piston ring interface exceeds temperatures of 225°C to 250°C has existed for decades. It is a problem that has persistently prohibited advances in non-watercooled LHR engine development. Though the problem is not specific to non-watercooled LHR diesel engines, it is the topic of this research study for the past two and one half years. In the late 1970s and throughout the 1980s, a tremendous amount of research had been placed upon the development of the LHR diesel engine. LHR engine finite element design and cycle simulation models had been generated. Many of these projected the cylinder liner piston ring top ring reversal (TRR) temperature to exceed 540°C[1]. In order for the LHR diesel to succeed, a tribological solution for these high TRR temperatures had to be developed.
Technical Paper

Advances in High Temperature Components for the Adiabatic Engine

1991-02-01
910457
An advanced low heat rejection engine concept has been selected based on a trade-off between thermal insulating performance and available technology. The engine concept heat rejection performance is limited by available ring-liner tribology and requires cylinder liner cooling to control the piston top ring reversal temperature. This engine concept is composed of a titanium piston, headface plate and cylinder liner insert with thermal barrier coatings. Monolithic zirconia valve seat inserts, and thermal barrier coated valves and intake-exhaust ports complete the insulation package. The tribological system is composed of chrome oxide coated cylinder, M2 steel top piston ring, M2 steel valve guides, and an advanced polyol ester class lubricant.
Journal Article

An Evaluation of Residual Gas Fraction Measurement Techniques in a High Degree of Freedom Spark Ignition Engine

2008-04-14
2008-01-0094
Stringent fuel economy and emissions regulations have driven development of new mixture preparation technologies and increased spark-ignition engine complexity. Additional degrees of freedom, brought about by devices such as cam phasers and charge motion control valves, enable greater range and flexibility in engine control. This permits significant gains in fuel efficiency and emission control, but creates challenges related to proper engine control and calibration techniques. Accurate experimental characterization of high degree of freedom engines is essential for addressing the controls challenge. In particular, this paper focuses on the evaluation of three experimental residual gas fraction measurement techniques for use in a spark ignition engine equipped with dual-independent variable camshaft phasing (VVT).
Technical Paper

An Investigation of the Effects of Node Density on Finite Element Thermal/Stress Analysis as Applied to Low Heat Rejection Diesel Heads

1994-03-01
940950
In our prior analytical work concerning a finite element methodology for thermal stress analysis of minimum cooled low heat rejection (LHR) engine cylinder heads, a very fine mesh with strict aspect ratio and element density criteria was used. In this current study, these criteria were relaxed and two other finite element models with different element densities were used to solve the same thermal stress problem. The thermal and stress results of the relaxed models are compared to those of the earlier very fine mesh results. It is the aim of this paper to show in a semi-quantified manner, how mesh density can affect thermal stress solutions in LHR engine heads. Hopefully this will enable other analysts working in this area to make some judgement on mesh density before starting an actual modelling effort, resulting in a savings of time and manpower resources.
Technical Paper

An Optimization Study of Manufacturing Variation Effects on Diesel Injector Design with Emphasis on Emissions

2004-03-08
2004-01-1560
This paper investigates the effects of manufacturing variations in fuel injectors on the engine performance with emphasis on emissions. The variations are taken into consideration within a Reliability-Based Design Optimization (RBDO) framework. A reduced version of Multi-Zone Diesel engine Simulation (MZDS), MZDS-lite, is used to enable the optimization study. The numerical noise of MZDS-lite prohibits the use of gradient-based optimization methods. Therefore, surrogate models are developed to filter out the noise and to reduce computational cost. Three multi-objective optimization problems are formulated, solved and compared: deterministic optimization using MZDS-lite, deterministic optimization using surrogate models and RBDO using surrogate models. The obtained results confirm that manufacturing variation effects must be taken into account in the early product development stages.
Technical Paper

Analysis of Load and Speed Transitions in an HCCI Engine Using 1-D Cycle Simulation and Thermal Networks

2006-04-03
2006-01-1087
Exhaust gas rebreathing is considered to be a practical enabler that could be used in HCCI production engines. Recent experimental work at the University of Michigan demonstrates that the combustion characteristics of an HCCI engine using large amounts of hot residual gas by rebreathing are very sensitive to engine thermal conditions. This computational study addresses HCCI engine operation with rebreathing, with emphasis on the effects of engine thermal conditions during transient periods. A 1-D cycle simulation with thermal networks is carried out under load and speed transitions. A knock integral auto-ignition model, a modified Woschni heat transfer model for HCCI engines and empirical correlations to define burn rate and combustion efficiency are incorporated into the engine cycle simulation model. The simulation results show very different engine behavior during the thermal transient periods compared with steady state.
Technical Paper

Analysis of Premixed Charge Compression Ignition Combustion With a Sequential Fluid Mechanics-Multizone Chemical Kinetics Model

2005-04-11
2005-01-0115
We have developed a methodology for analysis of Premixed Charge Compression Ignition (PCCI) engines that applies to conditions in which there is some stratification in the air-fuel distribution inside the cylinder at the time of combustion. The analysis methodology consists of two stages: first, a fluid mechanics code is used to determine temperature and equivalence ratio distributions as a function of crank angle, assuming motored conditions. The distribution information is then used for grouping the mass in the cylinder into a two-dimensional (temperature-equivalence ratio) array of zones. The zone information is then handed on to a detailed chemical kinetics model that calculates combustion, emissions and engine efficiency information. The methodology applies to situations where chemistry and fluid mechanics are weakly linked.
Technical Paper

Assessment of Alternative Strategies for Reducing Hydrocarbon and Carbon Monoxide Emissions from Small Two-Stroke Engines

1996-02-01
960743
Five small two-stroke engine designs were tested at different air/fuel ratios, under steady state and transient cycles. The effects of combustion chamber design, carburetor design, lean burning, and fuel composition on performance, hydrocarbon and carbon monoxide emissions were studied. All tested engines had been designed to run richer than stoichiometric in order to obtain satisfactory cooling and higher power. While hydrocarbon and carbon monoxide emissions could be greatly reduced with lean burning, engine durability would be worsened. However, it was shown that the use of a catalytic converter with acceptably lean combustion was an effective method of reducing emissions. Replacing carburetion with in-cylinder fuel injection in one of the engines resulted in a significant reduction of hydrocarbon and carbon monoxide emissions.
Technical Paper

Assessment of Thin Thermal Barrier Coatings for I.C. Engines

1995-02-01
950980
This paper investigates theoretically the effects of heat transfer characteristics, such as crank-angle phasing and wall temperature swings, on the thermodynamic efficiency of an IC engine. The objective is to illustrate the fundamental physical basis of applying thin thermal barrier coatings to improve the performance of military and commercial IC engines. A simple model illustrates how the thermal impedance and thickness of coatings can be manipulated to control heat transfer and limit the high temperatures in engine components. A friction model is also included to estimate the overall improvement in engine efficiency by the proper selection of coating thickness and material.
Technical Paper

Characterizing the Effect of Combustion Chamber Deposits on a Gasoline HCCI Engine

2006-10-16
2006-01-3277
Homogenous Charge Compression Ignition (HCCI) engines offer a good potential for achieving high fuel efficiency while virtually eliminating NOx and soot emissions from the exhaust. However, realizing the full fuel economy potential at the vehicle level depends on the size of the HCCI operating range. The usable HCCI range is determined by the knock limit on the upper end and the misfire limit at the lower end. Previously proven high sensitivity of the HCCI process to thermal conditions leads to a hypothesis that combustion chamber deposits (CCD) could directly affect HCCI combustion, and that insight about this effect can be helpful in expanding the low-load limit. A combustion chamber conditioning process was carried out in a single-cylinder gasoline-fueled engine with exhaust re-breathing to study CCD formation rates and their effect on combustion. Burn rates accelerated significantly over the forty hours of running under typical HCCI operating conditions.
Technical Paper

Closed Loop Control Using Ion Current Signal in a Diesel Engine

2012-04-01
2011-01-2433
Signals indicative of in-cylinder combustion have been under investigation for the control of diesel engines to meet stringent emission standards and other production targets in performance and fuel economy. This paper presents the results of an investigation on the use of the ion current signal for the close loop control of a heavy duty four cylinder turbocharged diesel engine equipped with a common rail injection system. A correlation is developed between the start of ion current signal (SIC) and the location of the peak of premixed combustion (LPPC) in the rate of heat release trace. Based on this correlation, a PID closed loop controller is developed to adjust the injection timing for proper combustion phasing under steady and transient engine operating conditions.
X