Refine Your Search

Topic

Author

Search Results

Technical Paper

Using Carbon-14 Isotope Tracing to Investigate Molecular Structure Effects of the Oxygenate Dibutyl Maleate on Soot Emissions from a DI Diesel Engine

2004-06-08
2004-01-1849
The effect of oxygenate molecular structure on soot emissions from a DI diesel engine was examined using carbon-14 (14C) isotope tracing. Carbon atoms in three distinct chemical structures within the diesel oxygenate dibutyl maleate (DBM) were labeled with 14C. The 14C from the labeled DBM was then detected in engine-out particulate matter (PM), in-cylinder deposits, and CO2 emissions using accelerator mass spectrometry (AMS). The results indicate that molecular structure plays an important role in determining whether a specific carbon atom either does or does not form soot. Chemical-kinetic modeling results indicate that structures that produce CO2 directly from the fuel are less effective at reducing soot than structures that produce CO before producing CO2.
Journal Article

Understanding the Dynamic Evolution of Cyclic Variability at the Operating Limits of HCCI Engines with Negative Valve Overlap

2012-04-16
2012-01-1106
An experimental study is performed for homogeneous charge compression ignition (HCCI) combustion focusing on late phasing conditions with high cyclic variability (CV) approaching misfire. High CV limits the feasible operating range and the objective is to understand and quantify the dominating effects of the CV in order to enable controls for widening the operating range of HCCI. A combustion analysis method is developed for explaining the dynamic coupling in sequences of combustion cycles where important variables are residual gas temperature, combustion efficiency, heat release during re-compression, and unburned fuel mass. The results show that the unburned fuel mass carries over to the re-compression and to the next cycle creating a coupling between cycles, in addition to the well known temperature coupling, that is essential for understanding and predicting the HCCI behavior at lean conditions with high CV.
Journal Article

Understanding the Chemical Effects of Increased Boost Pressure under HCCI Conditions

2008-04-14
2008-01-0019
One way to increase the load range in an HCCI engine is to increase boost pressure. In this modeling study, we investigate the effect of increased boost pressure on the fuel chemistry in an HCCI engine. Computed results of HCCI combustion are compared to experimental results in a HCCI engine. We examine the influence of boost pressure using a number of different detailed chemical kinetic models - representing both pure compounds (methylcyclohexane, cyclohexane, iso-octane and n-heptane) and multi-component models (primary reference fuel model and gasoline surrogate fuel model). We examine how the model predictions are altered by increased fueling, as well as reaction rate variation, and the inclusion of residuals in our calculations. In this study, we probe the low temperature chemistry (LTC) region and examine the chemistry responsible for the low-temperature heat release (LTHR) for wide ranges of intake boost pressure.
Technical Paper

Turbocharger Matching for a 4-Cylinder Gasoline HCCI Engine Using a 1D Engine Simulation

2010-10-25
2010-01-2143
Naturally aspirated HCCI operation is typically limited to medium load operation (∼ 5 bar net IMEP) by excessive pressure rise rate. Boosting can provide the means to extend the HCCI range to higher loads. Recently, it has been shown that HCCI can achieve loads of up to 16.3 bar of gross IMEP by boosting the intake pressure to more than 3 bar, using externally driven compressors. However, investigating HCCI performance over the entire speed-load range with real turbocharger systems still remains an open topic for research. A 1 - D simulation of a 4 - cylinder 2.0 liter engine model operated in HCCI mode was used to match it with off-the-shelf turbocharger systems. The engine and turbocharger system was simulated to identify maximum load limits over a range of engine speeds. Low exhaust enthalpy due to the low temperatures that are characteristic of HCCI combustion caused increased back-pressure and high pumping losses and demanded the use of a small and more efficient turbocharger.
Technical Paper

Thermodynamic and Chemical Effects of EGR and Its Constituents on HCCI Autoignition

2007-04-16
2007-01-0207
EGR can be used beneficially to control combustion phasing in HCCI engines. To better understand the function of EGR, this study experimentally investigates the thermodynamic and chemical effects of real EGR, simulated EGR, dry EGR, and individual EGR constituents (N2, CO2, and H2O) on the autoignition processes. This was done for gasoline and various PRF blends. The data show that addition of real EGR retards the autoignition timing for all fuels. However, the amount of retard is dependent on the specific fuel type. This can be explained by identifying and quantifying the various underlying mechanisms, which are: 1) Thermodynamic cooling effect due to increased specific-heat capacity, 2) [O2] reduction effect, 3) Enhancement of autoignition due to the presence of H2O, 4) Enhancement or suppression of autoignition due to the presence of trace species such as unburned or partially-oxidized hydrocarbons.
Journal Article

The Reduced Effectiveness of EGR to Mitigate Knock at High Loads in Boosted SI Engines

2017-09-04
2017-24-0061
Numerous studies have demonstrated that exhaust gas recirculation (EGR) can attenuate knock propensity in spark ignition (SI) engines at naturally aspirated or lightly boosted conditions [1]. In this study, we investigate the role of cooled EGR under higher load conditions with multiple fuel compositions, where highly retarded combustion phasing typical of modern SI engines was used. It was found that under these conditions, EGR attenuation of knock is greatly reduced, where EGR doesn’t allow significant combustion phasing advance as it does under lighter load conditions. Detailed combustion analysis shows that when EGR is added, the polytropic coefficient increases causing the compressive pressure and temperature to increase. At sufficiently highly boosted conditions, the increase in polytropic coefficient and additional trapped mass from EGR can sufficiently reduce fuel ignition delay to overcome knock attenuation effects.
Technical Paper

The Potential of HCCI Combustion for High Efficiency and Low Emissions

2002-06-03
2002-01-1923
Homogeneous Charge Compression Ignition (HCCI) engines can have efficiencies as high as compression-ignition, direct-injection (CIDI) engines (an advanced version of the commonly known diesel engine), while producing ultra-low emissions of oxides of nitrogen (NOx) and particulate matter (PM). HCCI engines can operate on gasoline, diesel fuel, and most alternative fuels. While HCCI has been demonstrated and known for quite some time, only the recent advent of electronic sensors and controls has made HCCI engines a potential practical reality. This paper provides a comprehensive overview of the current state-of-the-art in HCCI technology, estimates the potential benefits HCCI engines could bring to U.S. transportation vehicles, and lists the R&D barriers that need to be overcome before HCCI engines might be considered for commercial application.
Technical Paper

The Influence of Fuel Volatility on the Liquid-Phase Fuel Penetration in a Heavy-Duty D.I. Diesel Engine

1998-02-23
980510
The objective of this investigation is to verify and characterize the influence of fuel volatility on maximum liquid-phase fuel penetration for a variety of actual Diesel fuels under realistic Diesel engine operating conditions. To do so, liquid-phase fuel penetration was measured for a total of eight Diesel fuels using laser elastic-scatter imaging. The experiments were carried out in an optically accessible Diesel engine of the “heavy-duty” size class at a representative medium speed (1200 rpm) operating condition. In addition to liquid-phase fuel penetration, ignition delay was assessed for each fuel based on pressure-derived apparent heat release rate and needle lift data. For all fuels examined, it was observed that initially the liquid fuel penetrates almost linearly with increasing crank angle until reaching a maximum characteristic length. Beyond this characteristic length, the fuel is entirely vapor phase and not just smaller fuel droplets.
Technical Paper

The Effects of Stroke-to-Bore Ratio on HCCI Combustion

2010-04-12
2010-01-0842
This paper discusses the effects of stroke-to-bore (S/B) ratio on HCCI combustion. KIVA-3V, coupled with a multi-zone detailed chemical kinetics solver, is used to quantify the effects of changes in S/B ratio to heat transfer, thermal stratification and HCCI combustion. Three S/B ratios (0 5, 1.1 and 1.5) are analyzed. The results indicate that a cylinder with smaller S/B has more heat losses and lower thermal efficiency compared with a cylinder with larger S/B ratio, because of larger area-to-volume ratio near TDC. Moreover, the lowest S/B ratio case has a narrower temperature distribution before the onset of combustion. This leads to shorter burn duration, higher heat release rate and, consequently, increased knocking tendency. The emission results also favor the higher S/B ratio, with S/B=0.5 having the highest CO and HC emissions for relatively early combustion phasing; however, this trend is reversed as combustion is retarded.
Technical Paper

The Effects of Injection Timing and Diluent Addition on Late-Combustion Soot Burnout in a DI Diesel Engine Based on Simultaneous 2-D Imaging of OH and Soot

2000-03-06
2000-01-0238
The effects of injection timing and diluent addition on the late-combustion soot burnout in a direct-injection (DI) diesel engine have been investigated using simultaneous planar imaging of the OH-radical and soot distributions. Measurements were made in an optically accessible DI diesel engine of the heavy-duty size class at a 1680 rpm, high-load operating condition. A dual-laser, dual-camera system was used to obtain the simultaneous “single-shot” images using planar laser-induced fluorescence (PLIF) and planar laser-induced incandescence (PLII) for the OH and soot, respectively. The two laser beams were combined into overlapping laser sheets before being directed into the combustion chamber, and the optical signal was separated into the two cameras by means of an edge filter.
Technical Paper

The Effect of TDC Temperature and Density on the Liquid-Phase Fuel Penetration in a D. I. Diesel Engine*

1995-10-01
952456
A parametric study of the liquid-phase fuel penetration of evaporating Diesel fuel jets has been conducted in a direct-injection Diesel engine using laser elastic-scatter imaging. The experiments were conducted in an optically accessible Diesel engine of the “heavy-duty” size class at a representative medium speed (1200 rpm) operating condition. The density and temperature at TDC were varied systematically by adjusting the intake temperature and pressure. At all operating conditions the measurements show that initially the liquid fuel penetrates almost linearly with increasing crank angle until reaching a maximum length. Then, the liquid-fuel penetration length remains fairly constant although fuel injection continues. At a TDC density of 16.6 kg/m3 and a temperature of about 1000 K the maximum penetration length is approximately 23 mm. However, it varies significantly as TDC conditions are changed, with the liquid-length being less at higher temperatures and at higher densities.
Technical Paper

The Autoignition Chemistry of Paraffinic Fuels and Pro-Knock and Anti-Knock Additives: A Detailed Chemical Kinetic Study

1991-10-01
912314
A numerical model is used to examine the chemical kinetic processes leadING to knocking in spark-ignition internal combustion engines. The construction and validation of the model is described in detail, including low temperature reaction paths involving alkylperoxy radical isomerization. The numerical model is applied to C1 to C7 paraffinic hydrocarbon fuels, and a correlation is developed between the Research Octane Number (RON) and the computed time of ignition for each fuel. Octane number is shown to depend on the rates of OH radical production through isomerization reactions, and factors influencing the rate of isomerization such as fuel molecule size and structure are interpreted in terms of the kinetic model. knock behavior of fuel mixtures is examined, and the manner in which pro-knock and anti-knock additives influence ignition is studied numerically. The kinetics of methyl tert-butyl ether (MTBE) is discussed in particular detail.
Technical Paper

Spatial Analysis of Emissions Sources for HCCI Combustion at Low Loads Using a Multi-Zone Model

2004-06-08
2004-01-1910
We have conducted a detailed numerical analysis of HCCI engine operation at low loads to investigate the sources of HC and CO emissions and the associated combustion inefficiencies. Engine performance and emissions are evaluated as fueling is reduced from typical HCCI conditions, with an equivalence ratio ϕ = 0.26 to very low loads (ϕ = 0.04). Calculations are conducted using a segregated multi-zone methodology and a detailed chemical kinetic mechanism for iso-octane with 859 chemical species. The computational results agree very well with recent experimental results. Pressure traces, heat release rates, burn duration, combustion efficiency and emissions of hydrocarbon, oxygenated hydrocarbon, and carbon monoxide are generally well predicted for the whole range of equivalence ratios. The computational model also shows where the pollutants originate within the combustion chamber, thereby explaining the changes in the HC and CO emissions as a function of equivalence ratio.
Technical Paper

Soot and Fuel Distributions in a D.I. Diesel Engine via 2-D Imaging

1992-10-01
922307
Soot and fuel distributions have been studied in an optically accessible direct-injection diesel engine of the “heavy-duty” size class. Laser-induced incandescence (LII) was used to study the effects of changes in the engine speed on the in-cylinder soot distribution, and elastic (Mie) scattering and laser-induced fluorescence (LIF) were used to examine the fuel distribution. The investigation showed that, in this engine, soot is distributed throughout the cross section of the combusting region of the fuel jet for engine speeds ranging from 600 to 1800 rpm. No indication was found that soot occurs preferentially around the periphery of the plume. The LII images showed that the soot concentration decreases with increasing engine speed and injection pressure, and that the soot distribution extends much further upstream (toward the injector) at the lower engine speeds than at higher speeds.
Technical Paper

Soot Distribution in a D.I. Diesel Engine Using 2-D Laser-Induced Incandescence Imaging

1991-02-01
910224
Laser-induced incandescence (LII) has been explored as a diagnostic for qualitative two-dimensional imaging of the in-cylinder soot distribution in a diesel engine. Advantages of LII over elastic-scatter soot imaging techniques include no interfering signals from liquid fuel droplets, easy rejection of laser light scattered by in-cylinder surfaces, and the signal intensity being proportional to the soot volume fraction. LII images were obtained in a 2.3-liter, single cylinder, direct-injection diesel engine, modified for optical access. To minimize laser sheet and signal attenuation (which can affect almost any planar imaging technique applied to diesel engine combustion), a low-sooting fuel was used whose vaporization and combustion characteristics are typical of standard diesel fuels. Temporal and spatial sequences of LII images were made which show the extent of the soot distribution within the optically accessible portion the combusting spray plume.
Technical Paper

Soot Distribution in a D.I. Diesel Engine Using 2-D Imaging of Laser-induced Incandescence, Elastic Scattering, and Flame Luminosity

1992-02-01
920115
A combusting plume in an optically accessible direct-injection diesel engine was studied using simultaneous 2-D imaging of laser-induced incandescence (LII) and natural flame luminosity, as well as simultaneous 2-D imaging of LII and elastic scattering. Obtaining images simultaneously via two different techniques makes the effects of cycle-to-cycle variation identical for both images, permitting the details of the simultaneous images to be compared. Since each technique provides unique information about the combusting diesel plume, more can be learned from comparison of the simultaneous images than by any of the techniques alone. Among the insights gained from these measurements are that the combusting plume in this engine has a general pattern of high soot concentration towards the leading edge with a lower soot concentration extending upstream towards the injector. Also, the soot particles are found to be larger towards the leading edge of the plume than in the upstream region.
Technical Paper

Smoothing HCCI Heat-Release Rates Using Partial Fuel Stratification with Two-Stage Ignition Fuels

2006-04-03
2006-01-0629
This work explores the potential of partial fuel stratification to smooth HCCI heat-release rates at high load. A combination of engine experiments and multi-zone chemical-kinetics modeling was used for this. The term “partial” is introduced to emphasize that care is taken to supply fuel to all parts of the in-cylinder charge, which is essential for reaching high power output. It was found that partial fuel stratification offers good potential to achieve a staged combustion event with reduced pressure-rise rates. Therefore, partial fuel stratification has the potential to increase the high-load limits for HCCI/SCCI operation. However, for the technique to be effective the crank-angle phasing of the “hot” ignition has to be sensitive to the local ϕ. Sufficient sensitivity was observed only for fuel blends that exhibit low-temperature heat release (like diesel fuel).
Journal Article

Smoothing HCCI Heat Release with Vaporization-Cooling-Induced Thermal Stratification using Ethanol

2011-08-30
2011-01-1760
Ethanol and ethanol/gasoline blends are being widely considered as alternative fuels for light-duty automotive applications. At the same time, HCCI combustion has the potential to provide high efficiency and ultra-low exhaust emissions. However, the application of HCCI is typically limited to low and moderate loads because of unacceptably high heat-release rates (HRR) at higher fueling rates. This work investigates the potential of lowering the HCCI HRR at high loads by using partial fuel stratification to increase the in-cylinder thermal stratification. This strategy is based on ethanol's high heat of vaporization combined with its true single-stage ignition characteristics. Using partial fuel stratification, the strong fuel-vaporization cooling produces thermal stratification due to variations in the amount of fuel vaporization in different parts of the combustion chamber.
Technical Paper

Simultaneous Reduction of NOX and Soot in a Heavy-Duty Diesel Engine by Instantaneous Mixing of Fuel and Water

2007-04-16
2007-01-0125
Meeting diesel engine emission standards for heavy-duty vehicles can be achieved by simultaneous injection of fuel and water. An injection system for instantaneous mixing of fuel and water in the combustion chamber has been developed by injecting water in a mixing passage located in the periphery of the fuel spray. The fuel spray is then entrained by water and hot air before it burns. The experimental work was carried out on a Rapid Compression Machine and on a Komatsu direct-injection heavy-duty diesel engine with a high pressure common rail fuel injection system. It was also supported by Computational Fluid Dynamics simulations of the injection and combustion processes in order to evaluate the effect of water vapor distribution on cylinder temperature and NOX formation. It has been concluded that when the water injection is appropriately timed, the combustion speed is slower and the cylinder temperature lower than in conventional diesel combustion.
Technical Paper

Refinement and Validation of the Thermal Stratification Analysis: A post-processing methodology for determining temperature distributions in an experimental HCCI engine

2014-04-01
2014-01-1276
Refinements were made to a post-processing technique, termed the Thermal Stratification Analysis (TSA), that couples the mass fraction burned data to ignition timing predictions from the autoignition integral to calculate an apparent temperature distribution from an experimental HCCI data point. Specifically, the analysis is expanded to include all of the mass in the cylinder by fitting the unburned mass with an exponential function, characteristic of the wall-affected region. The analysis-derived temperature distributions are then validated in two ways. First, the output data from CFD simulations are processed with the Thermal Stratification Analysis and the calculated temperature distributions are compared to the known CFD distributions.
X