Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Simulation of the Effect of Intake Pressure and Split Injection on Lean Combustion Characteristics of a Poppet-Valve Two-Stroke Direct Injection Gasoline Engine at High Loads

2018-09-10
2018-01-1723
Poppet-valve two-stroke gasoline engines can increase the specific power of their four-stroke counterparts with the same displacement and hence decrease fuel consumption. However, knock may occur at high loads. Therefore, the combustion with stratified lean mixture was proposed to decrease knock tendency and improve combustion stability in a poppet-valve two-stroke direct injection gasoline engine. The effect of intake pressure and split injection on fuel distribution, combustion and knock intensity in lean mixture conditions at high loads was simulated with a three-dimensional computational fluid dynamic software. Simulation results show that with the increase of intake pressure, the average fuel-air equivalent ratio in the cylinder decreases when the second injection ratio was fixed at 70% at a given amount of fuel in a cycle.
Technical Paper

Numerical Study of the Effect of Direct-Injection Timing of Methanol and Excess Air Ratio on the Combustion Characteristics of a Marine Diesel-Methanol Dual-Fuel Engine

2023-10-31
2023-01-1626
Methanol is a suitable alternative fuel to relieve the problem of energy shortage and decrease the emission of greenhouse gases. The effect of direct-injection timing of methanol and diesel on the combustion characteristics of a marine diesel engine with bore of 210 mm was simulated with a 3-dimentional computational fluid dynamic (CFD) software AVL-FIRE. The combustion model was set-up and validated by the experimental data from the marine diesel engine. Results show that there are two peaks on the heat release rate (HRR) curves with the normal diesel-methanol combustion process. The first HRR peak is caused by the combustion of diesel. The second HRR peak is resulted from the hybrid combustion process of diesel and methanol. The injection timing of diesel influences the peak pressure rise rate (PPRR) and ignition timing. The indicated mean effective pressure (IMEP), the maximum in-cylinder pressure and combustion duration are influenced by the direct-injection timing of methanol.
X