Refine Your Search

Topic

Search Results

Technical Paper

The Effect of High-Power Capacitive Spark Discharge on the Ignition and Flame Propagation in a Lean and Diluted Cylinder Charge

2016-04-05
2016-01-0707
Research studies have suggested that changes to the ignition system are required to generate a more robust flame kernel in order to secure the ignition process for the future advanced high efficiency spark-ignition (SI) engines. In a typical inductive ignition system, the spark discharge is initiated by a transient high-power electrical breakdown and sustained by a relatively low-power glow process. The electrical breakdown is characterized as a capacitive discharge process with a small quantity of energy coming mainly from the gap parasitic capacitor. Enhancement of the breakdown is a potential avenue effectively for extending the lean limit of SI engine. In this work, the effect of high-power capacitive spark discharge on the early flame kernel growth of premixed methane-air mixtures is investigated through electrical probing and optical diagnosis.
Journal Article

Summary and Progress of the Hydrogen ICE Truck Development Project

2009-06-15
2009-01-1922
A development project for a hydrogen internal combustion engine (ICE) system for trucks supporting Japanese freightage has been promoted as a candidate for use in future vehicles that meet ultra-low emission and anti-global warming targets. This project aims to develop a hydrogen ICE truck that can handle the same freight as existing trucks. The core development technologies for this project are a direct-injection (DI) hydrogen ICE system and a liquid hydrogen tank system which has a liquid hydrogen pump built-in. In the first phase of the project, efforts were made to develop the DI hydrogen ICE system. Over the past three years, the following results have been obtained: A high-pressure hydrogen gas direct injector developed for this project was applied to a single-cylinder hydrogen ICE and the indicated mean effective pressure (IMEP) corresponding to a power output of 147 kW in a 6-cylinder hydrogen ICE was confirmed.
Technical Paper

Spray and Exhaust Emission Characteristics of a Biodiesel Engine Operating with the Blend of Plant Oil and DME

2002-03-04
2002-01-0864
As an effective method to solve the global warming and the energy crisis, the research has been carried out for the adaptability of plant oil as an alternative fuel for Diesel engine. But there are the problems of engine performance and exhaust emissions owing to the high viscosity and low volatility, when the plant oil is used as a fuel. In order to eliminate these problems, spray characteristics of the DME (Dimethyl ether) blended plant oil has been examined by using the image processing based on the shadowgraph methodology. Results show that the optimum mixing ratio of the blend is about 50:50 (by weight %). Thereafter, experiments have been conducted with a DI Diesel engine using the DME blended plant oil, and compared the exhaust emissions with Diesel, DME and transesterified fuel operation. From the results, it can be concluded that the combustion characteristics of DME blended plant oil are comparable to Diesel fuel.
Technical Paper

Spray Characteristics of LPG Direct Injection Diesel Engine

2003-03-03
2003-01-0764
In this study, spray images of LPG Blended Fuels (LBF) for DI diesel engines were observed using a constant volume chamber at high ambient temperature and pressure, and the spray characteristics of the fuel were investigated. The LBF spray started to vaporize at the injector tip and the outer downstream regions of the spray, like diesel fuel, because of the high temperature at these areas. There were more vaporized areas compared to diesel fuel. Sufficient fuel injection volume and volatility of LBF resulted in good fuel-air mixture, then, THC emissions decreased compared to diesel fuel at high load engine test conditions. Butane spray image could not be observed at the injector tip. It seems that the high temperature of the injector tip caused the butane spray to vaporize rapidly. Spray tip penetration with LBF and butane were equal or greater than with diesel fuel. The high volatility of LBF and butane had no noticeable effect on spray penetration.
Technical Paper

Spectroscopic Analysis of Combustion in the DME Diesel Engine

2004-03-08
2004-01-0089
For better understanding of the combustion characteristics in a direct injection dimethyl ether (DME) engine, the chemiluminescences of a burner flame and in-cylinder flame were analyzed using the spectroscopic method. The emission intensities of chemiluminescences were measured by a photomultiplier after passing through a monochrome-spectrometer. For the burner flame, line spectra were found nearby the wave length of 310 nm, 430 nm and 515 nm, arising from OH, CH and C2 radicals, respectively. For the in-cylinder flame, a strong continuous spectrum was found from 340 nm wave length to 550 nm. Line spectra were also detected nearby 310 nm, 395 nm and 430 nm, arising from OH, HCHO, and C2 radicals, respectively, partially overlapping with the continuous spectrum. Of these line spectra, 310 nm of OH radical did not overlapped with the continuous spectrum.
Technical Paper

Spectroscopic Analysis of Combustion Flame Fueled with Dimethyl Ether (DME)

2003-05-19
2003-01-1797
To better understand the combustion characteristics of DME, emission intensities of DME combustion radicals from a pre-mixed burner flame were measured by a spectroscope and photomultiplier, Results were compared to other fuels, such as methane and butane. Large peaks in the band spectra from pre-mixed and diffusion DME flames were found near 310 nm, 430 nm, and 515 nm, arising from OH, CH and C2, respectively. The DME emission intensities decreased with increasing the equivalence ratio in this study. Notably, the relative decrease in the C2 band spectra peak was greater than that of the OH band. Comparing the pre-mixed DME and butane flames, the butane band spectra peaks were similar in shape, but much stronger than those for DME. However, it was remarkable that CH and C2 band spectra peaks decreased only slightly with increase in equivalence ratio compared to the DME case.
Technical Paper

Simultaneous Observation of Droplets and Evaporated State of Liquid Butane and DME at Low Injection Pressure

2002-05-06
2002-01-1627
Alternative fuels such as butane and DME have different properties including high vapor pressure, low viscosity, and low surface tension, compared to other conventional fuels. These properties may lead to different atomization characteristics such as liquid core breakup, droplet size distribution, and evaporation process. To investigate these effects, a method based on shadowgraph technique to take spray images for droplets and surrounding gas was tested and evaluated. Experiments were performed at low injection pressure for early stage direct injection. It could be concluded from the results that the proposed method could be used to investigate the structure of evaporating spray, and the vapor layer around the spray core could be correlated to the turbulent mixing length for both of butane and DME sprays by observing vapor and spray core.
Technical Paper

Research and Development of a Medium Duty DME Truck

2005-05-11
2005-01-2194
Dimethyl ether (DME) has been attracting notable attention as a clean alternative fuel for diesel engines. The authors developed a medium duty DME truck, and investigated aspects of vehicle performance such as engine power, exhaust characteristics, fuel consumption, noise, in-vehicle systems, and so on. Results indicated that higher engine torque and power could be achieved with DME compared to diesel fuel operation of the base engine at any engine speed. Results also showed that emissions decreased dramatically, to 27% for NOx, 74% for HC, 95% for CO and 94% for PM (Particulate Matter) compared to maximum allowed Japanese 2003 emission regulations. The operating noise of the DME vehicle was slightly lower than the base vehicle with diesel fuel, because the combustion noise with DME was decreased compared to with diesel fuel operation. The DME vehicle was given a public license plate in October 2004, after which running test continued on public roads and on a test course.
Technical Paper

Renewable Ethanol Use for Enabling High Load Clean Combustion in a Diesel Engine

2013-04-08
2013-01-0904
As a renewable energy source, the ethanol fuel was employed with a diesel fuel in this study to improve the cylinder charge homogeneity for high load operations, targeting on ultra-low nitrogen oxides (NOx) and smoke emissions. A light-duty diesel engine is configured to adapt intake port fuelling of the ethanol fuel while keeping all other original engine components intact. High load experiments are performed to investigate the combustion control and low emission enabling without sacrificing the high compression ratio (18.2:1). The intake boost, exhaust gas recirculation (EGR) and injection pressure are independently controlled, and thus their effects on combustion and emission characteristics of the high load operation are investigated individually. The low temperature combustion is accomplished at high engine load (16~17 bar IMEP) with regulation compatible NOx and soot emissions.
Technical Paper

Prompt Heat Release Analysis to Improve Diesel Low Temperature Combustion

2009-06-15
2009-01-1883
Diesel engines operating in the low-temperature combustion (LTC) mode generally tend to produce very low levels of NOx and soot. However, the implementation of LTC is challenged by the higher cycle-to-cycle variation with heavy EGR operation and the narrower operating corridors. The robustness and efficiency of LTC operation in diesel engines can be enhanced with improvements in the promptness and accuracy of combustion control. A set of field programmable gate array (FPGA) modules were coded and interlaced to suffice on-the-fly combustion event modulations. The cylinder pressure traces were analyzed to update the heat release rate concurrently as the combustion process proceeds prior to completing an engine cycle. Engine dynamometer tests demonstrated that such prompt heat release analysis was effective to optimize the LTC and the split combustion events for better fuel efficiency and exhaust emissions.
Technical Paper

Performance and Emissions of a DI diesel engine Operated with LPG and Cetane Enhancing additives

2003-05-19
2003-01-1920
Experiments were conducted to operate a direct injection (DI) diesel engine by using Liquefied Petroleum Gas (LPG) as a main fuel. Aliphatic Hydrocarbon (AH), cetane enhancing additive and lubricating additive were also added to the LPG so that smooth operation was achieved with a wide range of engine loads. Since the lubricity of LPG is lower than the diesel fuel therefore lubricating additive was employed to enhance the lubricity of LPG blended fuel. Furthermore, prototype LPG diesel truck was developed in this work, and the mileage reached about 70,000 km without any major failure. Prototype truck has good starting, good drive-off, acceleration and braking characteristics.
Technical Paper

Performance and Emission Characteristics of Direct Injection DME Combustion under Low NOx Emissions

2023-04-11
2023-01-0327
Compression ignition internal combustion engines provide unmatched power density levels, making them suitable for numerous applications including heavy-duty freight trucks, marine shipping, and off-road construction vehicles. Fossil-derived diesel fuel has dominated the energy source for CI engines over the last century. To mitigate the dependency on fossil fuels and lessen anthropogenic carbon released into the atmosphere within the transportation sector, it is critical to establish a fuel source which is produced from renewable energy sources, all the while matching the high-power density demands of various applications. Dimethyl ether (DME) has been used in non-combustion applications for several decades and is an attractive fuel for CI engines because of its high reactivity, superior volatility to diesel, and low soot tendency. A range of feedstock sources can produce DME via the catalysis of syngas.
Technical Paper

Numerical Analysis of Carbon Monoxide Formation in DME Combustion

2011-11-08
2011-32-0632
Dimethyl ether (DME) is an oxygenated fuel with the molecular formula CH₃OCH₃, economically produced from various energy sources, such as natural gas, coal and biomass. It has gained prominence as a substitute for diesel fuel in Japan and in other Asian countries, from the viewpoint of both energy diversification and environmental protection. The greatest advantage of DME is that it emits practically no particulate matter when used in compression ignition (CI) engine. However, one of the drawbacks of DME CI engine is the increase carbon monoxide (CO) emission in high-load and high exhaust gas circulation (EGR) regime. In this study, we have investigated the CO formation characteristics of DME CI combustion based on chemical kinetics.
Technical Paper

NO Emission Characteristics of a CI Engine Fueled with Neat Dimethyl Ether

1999-03-01
1999-01-1116
In this study, the NO emission characteristics of a dimethyl ether fueled compression ignition (CI) engine were studied, and a suitable combustion control concept was developed. A three-zone thermo-chemical model was used to understand the basic NO formation characteristics with dimethyl ether. The experimental study was carried out using a small direct-injection diesel engine. Comparison of the experimental and calculated results showed that the dimethyl ether / air mixing process was relatively slow compared with diesel fuel, which is the main reason for the relatively high NO emissions with dimethyl ether operation, in spite of its lower adiabatic flame temperature. To reduce the high temperature period, turbulence was introduced into the combustion chamber by a high-turbulence combustion system, which reduced NO emissions. It became clear that acceleration of the mixing process is an important factor for NO reduction with dimethyl ether spray combustion.
Technical Paper

Mode Switching to Improve Low Load Efficiency of an Ethanol-Diesel Dual-Fuel Engine

2017-03-28
2017-01-0771
The dual-fuel application using ethanol and diesel fuels can substantially improve the classical trade-off between oxides of nitrogen (NOx) and smoke, especially at moderate-to-high load conditions. However, at low engine load levels, the use of a low reactivity fuel in the dual-fuel application usually leads to increased incomplete combustion products that in turn result in a significant reduction of the engine thermal efficiency. In this work, engine tests are conducted on a high compression ratio, single cylinder dual-fuel engine that incorporates the diesel direct-injection and ethanol port-injection. Engine load levels are identified, at which, diesel combustion offers better efficiency than the dual-fuel combustion while attaining low NOx and smoke emissions. Thereafter, a cycle-to-cycle based closed-loop controller is implemented for the combustion phasing and engine load control in both the diesel and dual-fuel combustion regimes.
Technical Paper

Methodology of Lubricity Evaluation for DME Fuel based on HFRR

2011-11-08
2011-32-0651
The methodology of lubricity evaluation for DME fuel was established by special modified HFRR (High-Frequency Reciprocating Rig) such as Multi-Pressure/Temperature HFRR (MPT-HFRR). The obtained results were summarized as follows: The HFRR method is adaptable with DME fuel. There is no effect of the test pressure (up to 1.8 MPa) and the test temperature (up to 100°C) of MPT-HFRR on wear scar diameter. The results with MPT-HFRR can be applied at the sliding parts of the injection needle and the fuel supply pump's plungers which are secured lubricity by the boundary lubrication mode mainly and the mixed lubrication mode partially. Using the fatty-acid-based lubricity improver in amounts of approximately 100 ppm, the lubricity of DME, which has a lack of self-lubricity, is ensured as same as the diesel fuel equivalent level. There is a big deviation of measured wear scar diameter when the LI concentration is not enough.
Technical Paper

Measurement of Trace Levels of Harmful Substances Emitted from a DME DI Diesel Engine

2005-05-11
2005-01-2202
In this report, trace levels of harmful substances, such as formaldehyde, acetaldehyde, SO2, benzene and so on, emitted from a DME fueled direct injection (DI) compression ignition (CI) engine were measured using a Fourier Transform Infrared (FTIR) emission analyzer. Results showed that the NO portion of NOx emissions with DME exceeded diesel fuel operation levels. DME fueling caused greater amounts of water than with diesel fuel operation. DME fueling was also associated with higher formaldehyde emissions than with diesel fuel operation. However, using an oxidation catalyst, formaldehyde could be decreased to a negligible level.
Technical Paper

Low Temperature Combustion of Neat Biodiesel Fuel on a Common-rail Diesel Engine

2008-04-14
2008-01-1396
The fatty acid alkyl esters derived from plants, rendered fats/oils and waste restaurant greases, commonly known as biodiesel, are renewable alternative fuels that may fulfill the demand gap caused by the depleting fossil diesel fuels. The combustion and emission characteristics of neat biodiesel fuels were investigated on a single cylinder of a 4-cylinder Ford common-rail direct injection diesel engine, which cylinder has been configured to have independent exhaust gas recirculation (EGR), boost and back pressures and exhaust gas sampling. The fatty acid methyl esters derived from Canola oil, soybean oil, tallow and yellow grease were first blended. Biodiesel engine tests were then conducted under the independent control of the fuel injection, EGR, boost and back pressure to achieve the low temperature combustion mode. Multi-pulse early-injections were employed to modulate the homogeneity history of the cylinder charge.
Technical Paper

Investigation of Fuel Impurities Effect on DME Powered Diesel Engine System

2010-04-12
2010-01-0468
DME as a fuel for compression ignition (diesel) engines has been actively studied for about ten years due to its characteristically low pollution and reputation as a “smokeless fuel”. During this time, the practical application is taking shape based on necessary tasks such as analysis of injection and combustion, engine performance, and development of experimental vehicles. At this moment, standardization of DME as a fuel was started under ISO in 2007. There are concerns regarding the impurities in DME regarding the mixing during production and distribution as well as their effect on additives for lubricity and odor. In this report, the effect of DME fuel impurities on performance of a DME powered diesel engine was investigated. The platform was a DME engine with common-rail fuel injection and was evaluated under partial load stable mode and Japanese transient mode (JE05) testing parameters.
Technical Paper

Hydrocarbon Speciation of Diesel Ignited Ethanol and Butanol Engines

2016-04-05
2016-01-0773
Dual fuel applications of alcohol fuels such as ethanol or butanol through port injection with direct injection of diesel can be effective in reduction of NOx. However, these dual fuel applications are usually associated with an increase in the incomplete combustion products such as hydrocarbons (HC), carbon monoxide (CO), and hydrogen (H2) emissions. An analysis of these products of incomplete combustion and the resulting combustion efficiency penalty was made in the diesel ignited alcohol combustion modes. The effect of EGR application was evaluated using ethanol and butanol as the port injected fuel, with varying alcohol fractions at the mid-load condition (10 -12 bar IMEP). The impact of varying the engine load (5 bar to 19 bar IMEP) in the diesel ignited ethanol mode on the incomplete combustion products was also studied. Emission measurements were taken and the net fuel energy loss as a result of the incomplete combustion was estimated.
X