Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Visualization of the Heat Transfer Surface of EGR Cooler to Examine Soot Adhesion and Abruption Phenomena

2017-03-28
2017-01-0127
Among the emerging technologies in order to meet ever stringent emission and fuel consumption regulations, Exhaust Gas Recirculation (EGR) system is becoming one of the prerequisites particularly for diesel engines. Although EGR cooler is considered to be an effective measure for further performance enhancement, exhaust gas soot deposition may cause degradation of the cooling. To address this issue, the authors studied the visualization of the soot deposition and removal phenomena to understand its behavior. Based on thermophoresis theory, which indicates that the effect of thermophoresis depends on the temperature difference between the gas and the wall surface exposed to the gas, a visualization method using a heated glass window was developed. By using glass with the transparent conductive oxide: tin-doped indium oxide, temperature of the heated glass surface is raised.
Journal Article

Visualization and Analysis of LSPI Mechanism Caused by Oil Droplet, Particle and Deposit in Highly Boosted SI Combustion in Low Speed Range

2015-04-14
2015-01-0761
In this study, in order to clarify the mechanism of preignition occurrence in highly boosted SI engine at low speed and high load operating conditions, directphotography of preignition events and light induced fluorescence imaging of lubricant oil droplets during preignition cycles were applied. An endoscope was attached to the cylinder head of the modified production engine. Preigntion events were captured using high-speed video camera through the endoscope. As a result, several types of preignition sources could be found. Preignition caused by glowing particles and deposit fragments could be observed by directphotography. Luminous flame was observed around the piston crevice area during the exhaust stroke of preignition cycles.
Journal Article

Very Lean and Diluted SI Combustion Using a Novel Ignition System with Repetitive Pulse Discharges

2009-11-03
2009-32-0119
A newly developed small-sized IES (inductive energy storage) circuit with semiconductor switch at turn-off action is successfully applied to an ignition system of a small gasoline internal combustion engine. This IES circuit can generate repetitive nanosecond pulse discharges. An ignition system using repetitive nanosecond pulse discharges is investigated as an alternative to a conventional spark ignition system. The present study focuses on the extension of the operational limits for lean and diluted combustion using the repetitive nanosecond pulse discharges. First, in order to investigate the flame kernel formation process when the repetitive nanosecond pulse discharges are used, the initial flame kernel is observed using Schlieren photography with a high speed camera. As a result, the flame kernel generated by repetitive pulse discharges is larger than by a conventional ignition system.
Journal Article

The Effects of Ignition Environment and Discharge Waveform Characteristics on Spark Channel Formation and Relationship between the Discharge Parameters and the EGR Combustion Limit

2015-09-01
2015-01-1895
In order to realize the high compression ratio and high dilution combustion toward improvement in thermal efficiency, the improvement in stability of ignition and initial phase of combustion under the high gas flow field is the major challenge. In terms of the shift on the higher power side of the operating point by downsizing and improvement of real world fuel consumption, the improvement of ignitability is increasingly expected in the wide operating range also including high load and high engine speed region. In this study, the effects of the gas pressure, gas flow velocity near the spark gap at ignition timing, and discharge current characteristics on spark channel formation were analyzed, focusing on restrike event and spark channel stretching in the spark channel formation process. And the relationship between the average discharge current until 1 ms and the EGR combustion limit was considered.
Technical Paper

The Effect of In-Cylinder Flow and Mixture Distributions on Combustion Characteristics in a HCCI Engine

2017-11-05
2017-32-0061
It has been widely known that thermal and fuel stratifications of in-cylinder mixture are effective to reduce in-cylinder pressure rise rate during high load HCCI operations. In order to optimize a combustion chamber design and combustion control strategy for HCCI engines with wide operational range, it is important to know quantitatively the influence of the temperature and fuel concentration distributions on ignition and heat release characteristics. At the same time, it is important to know the influence of in-cylinder flow and turbulence on the temperature and fuel concentration distributions. In this study, a numerical simulation of HCCI combustion were conducted to investigate the effects of the in-cylinder flow and turbulence, and the distributions of temperature on ignition and combustion characteristics in HCCI combustion.
Technical Paper

Stratification of Swirl Intensity in the Axial Direction for Control of Turbulence Generation During the Compression Stroke

1991-02-01
910261
Control of turbulence during the compression stroke is suggested by both theoretical calculations and experimental results obtained with an LDV measurement in a motored engine. The authors have found experimentally that when an axial distribution of swirl intensity exists, a large-scale annular vortex is formed inside the cylinder during the compression stroke and this vortex generates and transports turbulence energy. A numerical calculation is adopted to elucidate this phenomenon. Then, an axial stratification of swirl intensity is found to generate a large-scale annular vortex during the compression stroke by an interaction between the piston motion and the axial pressure gradient. The initial swirl profile is parametrically varied to assess its effect on the turbulence parameters. Among calculated results, turbulence energy is enhanced strongest when the swirl intensity is highest at the piston top surface and lowest at the bottom surface of the cylinder head.
Technical Paper

Scavenging Phenomena Based Post-oxidation in Exhaust Manifold of a Turbocharged Spark Ignition Engine

2019-12-19
2019-01-2197
In this research, a novel methodology for the post-oxidation in a turbocharged spark ignition (SI) engine is proposed and investigated that can improve the emissions along with the reduction in turbo-lag. In this research, both simulation and experimental activities are performed. The 1-D simulation model was used for the identification of efficient scavenging. Thereafter, experimental validation tests for modeling and post oxidation were conducted on a 4-cylinder turbocharged SI engine. From the results, it was revealed that efficient scavenging and post-oxidation can be obtained at lower speed and higher load. The enthalpy in exhaust manifold increased due to the post-oxidation reaction which in turn increased the temperature and pressure of the exhaust gases and hence emissions reduced. Also, due to the increased enthalpy at turbine upstream, the turbocharger speed increased and as a consequence, reduction in the turbo-lag was observed.
Technical Paper

Research and Development of a Direct Injection Stratified Charge Rotary Engine with a Pilot Flame Ignition System

2001-12-01
2001-01-1844
A Direct Injection Stratified Charge Rotary Engine ( DISC-RE ) with a pilot flame ignition system has been studied to find the possibility of simultaneous reductions of fuel consumption rate and HC exhaust gas emissions. Firstly, combustion characteristics in a model combustion chamber, which simulates the DISC-RE were examined from the viewpoints of calculation and experiment. The high speed photography and the indicated pressure analysis were experimentally performed while numerical calculations of the mixture formation and combustion processes were also carried out. As a result, it has been found that the combustion using the pilot flame ignition system is much activated and a better ignitability is attained under lean mixtures than using a spark ignition system. Secondly, a single rotor with 650 cc displacement DISC-RE was built as a prototype. Combustion characteristics and its performance were tested using a combustion analyzer.
Technical Paper

Proposition of a Stratified Charge System by Using In-Cylinder Gas Motion

1995-10-01
952455
A new idea for controlling the in-cylinder mixture formation in SI engines is proposed. This concept was developed by applying the results of numerical calculations. Fuel that is directly injected into the cylinder is transferred toward the cylinder head to form a mixture stratification by using the in-cylinder gas motion that is generated by the interaction between the swirl and squish flows inside a combustion chamber. At first, the flow characteristics were measured in the whole in-cylinder space using an LDV system. Also, numerical calculations of the in-cylinder flow were made using measured data as the initial conditions. Secondly, the local equivalence ratio at several points inside the combustion chamber was measured by using a fast gas sampling device.
Technical Paper

Performance Tests of Reverse Uniflow-Type Two-Stroke Gasoline DI Engine

2004-09-27
2004-32-0040
Conventional two-stroke engines have defects such as unstable combustion, high fuel consumption rate and high HC emissions. In order to overcome the defects, a direct fuel injection system and a novel scavenging system were adopted. The authors tested a newly developed reverse uniflow-type two-stroke direct injection gasoline engine that was designed by numerical simulations. In comparison with the base engine at low engine speed, HC emission was decreased by up to 80%, and BSFC was reduced by around 40%. Power and BSFC were superior to those of a latest port-injection four-stroke engine. Furthermore, it was found that engine performance of exhaust gas emissions, fuel economy or output power can be selectively optimized by switching homogeneous and stratified combustion.
Technical Paper

Performance Investigation of a PFI Gasoline Engine by Applying Various Kinds of Fuel Injectors

2020-01-24
2019-32-0546
In this report, the effect of injection specification, such as droplet size, lengths of nozzle tip and spray angle, on the engine performance was investigated using a 1.2 L port fuel injection (PFI) four-cylinder gasoline engine. The experimental conditions were selected to cover the daily operating mode, including the cold start and catalyst heating process. The experiments were conducted by varying not only the injectors but also the injection timing which was shifted from the exhaust to intake stroke. The results were evaluated by the fuel consumption and exhaust gas emissions. When these tests were conducted on a production engine, a carefully designed tumble generator was installed at the intake port to enhance the intake air flow. As a result, the injection specifications showed a potential to obtain less fuel consumption and lower engine-out emissions was evaluated.
Technical Paper

Numerical and Experimental Analysis of Abnormal Combustion in a SI Gasoline Engine with a Re-Entrant Piston Bowl and Swirl Flow

2022-01-09
2022-32-0038
Some SI (spark-ignition) engines fueled with gasoline for industrial machineries are designed based on the conventional diesel engine in consideration of the compatibility with installation. Such diesel engine-based SI engines secure a combustion chamber by a piston bowl instead of a pent-roof combustion chamber widely applied for SI engines for automobiles. In the development of SI engines, because knocking deteriorates the power output and the thermal efficiency, it is essential to clarify causes of knocking and predict knocking events. However, there has been little research on knocking in diesel engine-based SI engines. The purpose of this study is to elucidate knocking phenomena in a gasoline engine with a re-entrant piston bowl and swirl flow numerically and experimentally. In-cylinder visualization and pressure analysis of knock onset cycles have been experimentally performed. Locations of autoignition have been predicted by 3D-CFD analysis with detailed chemical reactions.
Technical Paper

Numerical and Experimental Analyses of Mixture Formation Process Using a Fan-shaped DI Gasoline Spray: Examinations on Effects of Crosswind and Wall Impingement

2009-04-20
2009-01-1502
The analysis of spray characteristics is important to examine the combustion characteristics of DI (Direct Injection) gasoline engines because the fuel-air mixture formation is controlled by spray characteristics and in-cylinder gas motion. However, the mixture formation process has not been well clarified yet. In this study, the characteristics of a fan-shaped spray caused from a slit-type injector, such as the droplet size, its velocity and the droplet distribution were simultaneously measured on a 2D plane by using improved ILIDS (Interferometric Laser Imaging for Droplet Sizing) method. ILIDS method is an optical measurement technique using interference fringes by illuminating a transparent spherical particles with a coherent laser light. In the measurement of the wall-impinging spray, effects of the distance to the wall and the wall temperature on the spray characteristics were investigated.
Technical Paper

Numerical Simulation to Understand the Cause and Sequence of LSPI Phenomena and Suggestion of CaO Mechanism in Highly Boosted SI Combustion in Low Speed Range

2015-04-14
2015-01-0755
The authors investigated the reasons of how a preignition occurs in a highly boosted gasoline engine. Based on the authors' experimental results, theoretical investigations on the processes of how a particle of oil or solid comes out into the cylinder and how a preignition occurs from the particle. As a result, many factors, such as the in-cylinder temperature, the pressure, the equivalence ratio and the component of additives in the lubricating oil were found to affect the processes. Especially, CaCO3 included in an oil as an additive may be changed to CaO by heating during the expansion and exhaust strokes. Thereafter, CaO will be converted into CaCO3 again by absorbing CO2 during the intake and compression strokes. As this change is an exothermic reaction, the temperature of CaCO3 particle increases over 1000K of the chemical equilibrium temperature determined by the CO2 partial pressure.
Technical Paper

Numerical Investigation of the Effect of Engine Speed and Delivery Ratio on the High-Speed Knock in a Small Two-Stroke SI Engine

2022-01-09
2022-32-0080
Knocking occurs within the high-speed range of small two-stroke engines used in handheld work equipment. High-speed knock may be affected by the engine speed and delivery ratio. However, evaluation of these factors independently using experimental methods is difficult. Therefore, in this study, these factors were independently evaluated using numerical calculations. The purpose of this study was to clarify the mechanism by which the intensity of high-speed knocking that occurs in small two-stroke engines becomes stronger. The results suggest that temperature inhomogeneity due to insufficient mixing of fresh air and previously burned gas may induce high-speed knocking in the operating range at high engine speeds.
Technical Paper

Numerical Investigation of Multi-Stage HCCI Combustion with Small Chamber Inside Piston

2023-09-29
2023-32-0020
Homogeneous charge compression ignition (HCCI) combustion is promising for not only high thermal efficiency but also reducing nitrogen oxides (NOx) and PM simultaneously. However, the operational range of the HCCI combustion is limited because of some issues, such as poor control of ignition timing and knocking by the excessive rate of pressure rise. In this study, a new combustion system based on the HCCI combustion process is proposed based on the authors' previous experimental work. This combustion system has a divided combustion chamber of two parts, one is small and the other is large. The most significant feature is the small chamber inside the piston. At first, combustion takes place in the small chamber, and then the burned gas is ejected into the large chamber to ignite the mixture in the large chamber.
Technical Paper

Numerical Investigation of Knocking in a Small Two-Stroke Engine with a High Compression Ration to Improve Thermal Efficiency

2023-09-29
2023-32-0079
This study aimed to achieve both a high compression ratio and low knock intensity in a two-stroke engine. Previous research has suggested that knock intensity can be reduced by combining combustion chamber geometry and scavenging passaging design for the same engine specifications with a compression ratio of 13.7. In this report, we investigate whether low knock intensity can be achieved at compression ratios of 14.4 and 16.8 by adjusting the combustion chamber geometry and scavenging passage design. As a result, the mechanism by which combustion chamber geometry and scavenging passage design change knock intensity was clarified.
Technical Paper

Numerical Examinations on the Effect of Active Piston-Movement Control

2004-09-27
2004-32-0065
In order to improve thermal efficiency of spark ignition engines, a novel method to increase degree of constant volume was considered. Because the combustion speed is not infinity as assumed in Otto cycle but limited, it is necessary to decrease the piston-movement around TDC so as to increase degree of constant volume. At first, experimental study was made to confirm this. A test engine which has longer expansion stroke than compression stroke and enables a slow piston-movement during combustion period was built. The experimental data indicated an increase in degree of constant volume, but did not show an increase in thermal efficiency. In order to clarify this reason, numerical simulations are conducted in this paper. As a result, the gain due to the increase in degree of constant volume caused by piston-motion during combustion was found not exceeding the loss by increased heat loss.
Technical Paper

Numerical Analysis of Mixture Preparation in a Reverse Uniflow-Type Two-Stroke Gasoline DI Engine

2001-12-01
2001-01-1815
The authors have been engaged in developing a new-generation two-stroke gasoline engine which could be employed ultimately for automobiles. By investigating the defects of the Schnurle-type two-stroke gasoline engine, a reverse uniflow-type direct injection engine has been developed and built. The newly introduced system employs stratified charge combustion in light to medium load conditions by using the technology already developed for the four-stroke direct injection gasoline engines while it can supply the maximum power output by using a super-charger and attaining homogeneous combustion. Engine performance is being tested experimentally. In order to analyze the performance test results, numerical analysis of in-cylinder phenomena, such as gas-exchange, gas motion, fuel spray formation, and mixture formation is carried out in this paper.
Technical Paper

Numerical Analysis of Gas Exchange Process in a Small Two-Stroke Gasoline Engine

1999-09-28
1999-01-3330
To survive the severe regulations for both the exhaust gas emissions and fuel economy, research on small two-stroke gasoline engines from both the experimental and theoretical viewpoints is quite necessary. In the present study, firstly, performance tests of a direct injection small two-stroke gasoline model engine were carried out. Based on these experimental results, three-dimensional flow calculations from scavenging pipe to exhaust pipe during the gas-exchange and piston compression processes were made with the same experimental conditions. As a result, the gas exchange process was investigated and some problems were clarified. Secondly, parametric calculations with changing just exhaust port timings were performed to solve the problems found in the above calculations.
X