Refine Your Search


Search Results

Technical Paper

Visualization of the Heat Transfer Surface of EGR Cooler to Examine Soot Adhesion and Abruption Phenomena

Among the emerging technologies in order to meet ever stringent emission and fuel consumption regulations, Exhaust Gas Recirculation (EGR) system is becoming one of the prerequisites particularly for diesel engines. Although EGR cooler is considered to be an effective measure for further performance enhancement, exhaust gas soot deposition may cause degradation of the cooling. To address this issue, the authors studied the visualization of the soot deposition and removal phenomena to understand its behavior. Based on thermophoresis theory, which indicates that the effect of thermophoresis depends on the temperature difference between the gas and the wall surface exposed to the gas, a visualization method using a heated glass window was developed. By using glass with the transparent conductive oxide: tin-doped indium oxide, temperature of the heated glass surface is raised.
Journal Article

Visualization and Analysis of LSPI Mechanism Caused by Oil Droplet, Particle and Deposit in Highly Boosted SI Combustion in Low Speed Range

In this study, in order to clarify the mechanism of preignition occurrence in highly boosted SI engine at low speed and high load operating conditions, directphotography of preignition events and light induced fluorescence imaging of lubricant oil droplets during preignition cycles were applied. An endoscope was attached to the cylinder head of the modified production engine. Preigntion events were captured using high-speed video camera through the endoscope. As a result, several types of preignition sources could be found. Preignition caused by glowing particles and deposit fragments could be observed by directphotography. Luminous flame was observed around the piston crevice area during the exhaust stroke of preignition cycles.
Journal Article

The Effects of Ignition Environment and Discharge Waveform Characteristics on Spark Channel Formation and Relationship between the Discharge Parameters and the EGR Combustion Limit

In order to realize the high compression ratio and high dilution combustion toward improvement in thermal efficiency, the improvement in stability of ignition and initial phase of combustion under the high gas flow field is the major challenge. In terms of the shift on the higher power side of the operating point by downsizing and improvement of real world fuel consumption, the improvement of ignitability is increasingly expected in the wide operating range also including high load and high engine speed region. In this study, the effects of the gas pressure, gas flow velocity near the spark gap at ignition timing, and discharge current characteristics on spark channel formation were analyzed, focusing on restrike event and spark channel stretching in the spark channel formation process. And the relationship between the average discharge current until 1 ms and the EGR combustion limit was considered.
Technical Paper

Research and Development of a Direct Injection Stratified Charge Rotary Engine with a Pilot Flame Ignition System

A Direct Injection Stratified Charge Rotary Engine ( DISC-RE ) with a pilot flame ignition system has been studied to find the possibility of simultaneous reductions of fuel consumption rate and HC exhaust gas emissions. Firstly, combustion characteristics in a model combustion chamber, which simulates the DISC-RE were examined from the viewpoints of calculation and experiment. The high speed photography and the indicated pressure analysis were experimentally performed while numerical calculations of the mixture formation and combustion processes were also carried out. As a result, it has been found that the combustion using the pilot flame ignition system is much activated and a better ignitability is attained under lean mixtures than using a spark ignition system. Secondly, a single rotor with 650 cc displacement DISC-RE was built as a prototype. Combustion characteristics and its performance were tested using a combustion analyzer.
Technical Paper

Performance Tests of Reverse Uniflow-Type Two-Stroke Gasoline DI Engine

Conventional two-stroke engines have defects such as unstable combustion, high fuel consumption rate and high HC emissions. In order to overcome the defects, a direct fuel injection system and a novel scavenging system were adopted. The authors tested a newly developed reverse uniflow-type two-stroke direct injection gasoline engine that was designed by numerical simulations. In comparison with the base engine at low engine speed, HC emission was decreased by up to 80%, and BSFC was reduced by around 40%. Power and BSFC were superior to those of a latest port-injection four-stroke engine. Furthermore, it was found that engine performance of exhaust gas emissions, fuel economy or output power can be selectively optimized by switching homogeneous and stratified combustion.
Technical Paper

Numerical and Experimental Analyses of Mixture Formation Process Using a Fan-shaped DI Gasoline Spray: Examinations on Effects of Crosswind and Wall Impingement

The analysis of spray characteristics is important to examine the combustion characteristics of DI (Direct Injection) gasoline engines because the fuel-air mixture formation is controlled by spray characteristics and in-cylinder gas motion. However, the mixture formation process has not been well clarified yet. In this study, the characteristics of a fan-shaped spray caused from a slit-type injector, such as the droplet size, its velocity and the droplet distribution were simultaneously measured on a 2D plane by using improved ILIDS (Interferometric Laser Imaging for Droplet Sizing) method. ILIDS method is an optical measurement technique using interference fringes by illuminating a transparent spherical particles with a coherent laser light. In the measurement of the wall-impinging spray, effects of the distance to the wall and the wall temperature on the spray characteristics were investigated.
Technical Paper

Numerical Simulation to Understand the Cause and Sequence of LSPI Phenomena and Suggestion of CaO Mechanism in Highly Boosted SI Combustion in Low Speed Range

The authors investigated the reasons of how a preignition occurs in a highly boosted gasoline engine. Based on the authors' experimental results, theoretical investigations on the processes of how a particle of oil or solid comes out into the cylinder and how a preignition occurs from the particle. As a result, many factors, such as the in-cylinder temperature, the pressure, the equivalence ratio and the component of additives in the lubricating oil were found to affect the processes. Especially, CaCO3 included in an oil as an additive may be changed to CaO by heating during the expansion and exhaust strokes. Thereafter, CaO will be converted into CaCO3 again by absorbing CO2 during the intake and compression strokes. As this change is an exothermic reaction, the temperature of CaCO3 particle increases over 1000K of the chemical equilibrium temperature determined by the CO2 partial pressure.
Technical Paper

Numerical Analysis of Mixture Preparation in a Reverse Uniflow-Type Two-Stroke Gasoline DI Engine

The authors have been engaged in developing a new-generation two-stroke gasoline engine which could be employed ultimately for automobiles. By investigating the defects of the Schnurle-type two-stroke gasoline engine, a reverse uniflow-type direct injection engine has been developed and built. The newly introduced system employs stratified charge combustion in light to medium load conditions by using the technology already developed for the four-stroke direct injection gasoline engines while it can supply the maximum power output by using a super-charger and attaining homogeneous combustion. Engine performance is being tested experimentally. In order to analyze the performance test results, numerical analysis of in-cylinder phenomena, such as gas-exchange, gas motion, fuel spray formation, and mixture formation is carried out in this paper.
Technical Paper

Numerical Analysis of Gas Exchange Process in a Small Two-Stroke Gasoline Engine

To survive the severe regulations for both the exhaust gas emissions and fuel economy, research on small two-stroke gasoline engines from both the experimental and theoretical viewpoints is quite necessary. In the present study, firstly, performance tests of a direct injection small two-stroke gasoline model engine were carried out. Based on these experimental results, three-dimensional flow calculations from scavenging pipe to exhaust pipe during the gas-exchange and piston compression processes were made with the same experimental conditions. As a result, the gas exchange process was investigated and some problems were clarified. Secondly, parametric calculations with changing just exhaust port timings were performed to solve the problems found in the above calculations.
Technical Paper

Mixture Formation Analysis of a Schnurle-Type Two-Stroke Gasoline DI Engine

Because the two-stroke gasoline engine has a feature of high power density, it might become a choice for automobiles' power train if the high HC exhaust emissions and high fuel consumption rate could be improved. As the GDI technology is quite effective for two-stroke engines, a Schnurle-type small engine was modified to a GDI engine, and its performance was tested. Also, numerical analysis of the mixture-formation process was carried out. Results indicated it was possible to reduce both the HC emissions and fuel consumption drastically with the same maximum power as a carbureted engine at WOT condition. However, misfiring in light load condition was left unresolved. Numerical analysis clarified the process of how the mixture formation got affected by the injector location, injection timing, and gas motion.
Technical Paper

Measurement of the Local Gas Temperature at Autoignition Conditions Inside the Combustion Chamber Using a Two-Wire Thermocouple

The phenomenon of autoignition is an important aspect of HCCI and knock, hence reliable information on local gas temperature in a combustion chamber must be obtained. Recently, several studies have been conducted by using laser techniques such as CARS. It has a high spatial resolution, but has proven difficult to apply in the vicinity of combustion chamber wall and requires special measurement skills. Meanwhile, a thermocouple is useful to measure local gas temperature even in the vicinity of wall. However, a traditional one-wire thermocouple is not adaptable to measure the in-cylinder gas temperature due to slow response. The issue of response can be overcome by adopting a two-wire thermocouple. The two-wire thermocouple is consisted of two fine wire thermocouples with different diameter hence it is possible to determine the time constant using the raw data from each thermocouple.
Technical Paper

Investigation of Lubricating Oil Properties Effect on Low Speed Pre-Ignition

The effect of properties of lubricating oil on low speed pre-ignition (LSPI) was investigated. Three different factors of oil properties such as cetane number, distillation characteristics and Calcium (Ca) additive (with and without) are prepared and examined. Then actual engine test of LSPI was carried out to evaluate the effect and to clarify the mechanism and role of lubricating oil. Finally it is clarified that the oil cetane number and/or Ca additive strongly affect LSPI phenomena.
Technical Paper

Investigation and Improvement of LSPI Phenomena and Study of Combustion Strategy in Highly Boosted SI Combustion in Low Speed Range

LSPI is an important issue to enable and enhance the effect of downsizing in SI engines. Experimental work was carried out by using 4 cylinder turbocharged gasoline engine, attaching the extra supercharger to get a higher boost pressure. Many parameters of driving condition, engine specification and lubricants were studied and some of them were extracted as the major items which affect the possibility of LSPI. Coolant temperature and Calcium (Ca) additive to lubricant had strong effect on the frequency of LSPI. Combustion strategy of strong miller cycle and LPEGR were also studied and compared in very high BMEP condition. Finally IMEPg of 3MPa at 1500rpm was achieved by using a single cylinder test engine equipped with 2-stage mechanically supercharged intake system.
Technical Paper

Improvement in Thermal Efficiency of Lean Burn Pre-Chamber Natural Gas Engine by Optimization of Combustion System

To understand the mechanism of the combustion by torch flame jet in a gas engine with pre-chamber and also to obtain the strategy of improving thermal efficiency by optimizing the structure of pre-chamber including the diameter and number of orifices, the combustion process was investigated by three dimensional numerical simulations and experiments of a single cylinder natural gas engine. As a result, the configuration of orifices was found to affect the combustion performance strongly. With the same orifice diameter of 1.5mm, thermal efficiency with 7 orifices in pre-chamber was higher than that with 4 orifices in pre-chamber, mainly due to the reduction of heat loss by decreasing the impingement of torch flame on the cylinder linear. Better thermal efficiency was achieved in this case because the flame propagated area increases rapidly while the flame jets do not impinge on the cylinder wall intensively.
Technical Paper

Fuel Stratification Using Twin-Tumble Intake Flows to Extend Lean Limit in Super-Lean Gasoline Combustion

To drastically improve thermal efficiency of a gasoline spark-ignited engine, super-lean burn is a promising solution. Although, studies of lean burn have been made by so many researchers, the realization is blocked by a cycle-to-cycle combustion variation. In this study, based on the causes of cycle-to-cycle variation clarified by the authors’ previous study, a unique method to reduce the cycle-to-cycle variation is proposed and evaluated. That is, a bulk quench at early expansion stroke could be reduced by making slight fuel stratification inside the cylinder using the twin-tumble of intake flows. As a result, the lean limit was extended with keeping low NOx and moderate THC emissions, leading to higher thermal efficiency.
Journal Article

Extension of Operating Range of a Multi-Cylinder Gasoline HCCI Engine using the Blowdown Supercharging System

The objective of this study is to develop a practical technique to achieve HCCI operation with wide operation range. To attain this objective, the authors previously proposed the blowdown supercharge (BDSC) system and demonstrated the potential of the BDSC system to extend the high load HCCI operational limit. In this study, experimental works were conducted with focusing on improvement of combustion stability at low load operation and the reduction in cylinder to cylinder variation in ignition timing of multi-cylinder HCCI operation using the BDSC system. The experiments were conducted using a slightly modified production four-cylinder gasoline engine with compression ratio of about 12 at constant engine speed of 1500 rpm. The test fuel used was commercial gasoline which has RON of 91. To improve combustion stability at low load operation, the valve actuation strategy for the BDSC system was newly proposed and experimentally examined.
Technical Paper

Evaluation of a Concept for DI Gasoline Combustion Using Enhanced Gas Motion

A direct injection gasoline engine system which employs a unique combustion system with enhanced gas motion is evaluated. Enhanced gas motion is produced by employing both a moderately strong swirl flow and a cavity in the piston. Advantages of this system are that the injection timing or spark timing need not be controlled severely and that since the injection timing can be set at near the intake BDC, time for evaporation can be gained to reduce soot emissions. Problems to be improved are that the Nox emissions level is worse than other lean burn systems and full load operation is not evaluated. According to the numerical calculations, the problems may be solved by enhancing the in-cylinder gas motion with axial stratification of swirl intensity at intake BDC; strong swirl near the cylinder head and weak swirl near the piston surface.
Technical Paper

Effects of Fuel and Diluents on Stratified Charge Turbulent Combustion in Simplified Conditions

Stratified charge combustion system is widely used for production engines due to the significant potentials, such as low fuel consumption rate and low exhaust gas emissions. The combustion phenomena in simplified stratified charge conditions have been examined with changing the initial turbulence intensity, degree of mixture charge stratification, and kinds of fuels in order to clarify the features. Moreover, it should be noted that the stratified charge combustion may cause raising NOx formation. EGR (Exhaust Gas Recirculation) system is widely used for this solution. In this study, EGR was simulated by using dilution gases, such as CO2 and N2. Combustion characteristics in homogeneous and stratified charge fields with dilution gas were examined. As a result, some interesting combustion characteristics between CO2 and N2 depending on the specific heat, initial turbulence intensity, and degree of charge stratification were found.
Technical Paper

Effect of Low Octane Gasoline on Performance of a HCCI Engine with the Blowdown Supercharging

In this study, the effect of the low octane number fuel on HCCI engine performance was experimentally investigated using a slightly modified commercial four-cylinder gasoline engine. To operate the engine in HCCI strategy with wide operational range, the blowdwon supercharging (BDSC) system proposed by the authors was applied in the test engine. Research octane number (RON) of test fuels was varied from 90 to 78.5 as an experimental parameter. Experimental results showed that in the range of the present study, HCCI operational range, brake thermal efficiency and exhaust emissions during HCCI operation were little affected by the RON of the test fuels. In contrast, during SI operation, thermal efficiency was deteriorated with lower RON fuel because of knocking.
Technical Paper

Effect of Coolant Water and Intake Air Temperatures on Thermal Efficiency of Gasoline Engines

An optimization of thermal management system in a gasoline engine is considered to improve thermal efficiency by minimizing the cost increase without largely changing the configuration of engine system. In this study, the influence of water temperature and intake air temperature on thermal efficiency were investigated using an inline four-cylinder 1.2L gasoline engine. In addition, one-dimensional engine simulations were conducted by using a software of GT-SUITE. Brake thermal efficiency for different engine speeds and loads could be quantitatively predicted with changing the cooling water temperature in the cylinder head. Then, in order to predict the improvement of the fuel consumption in actual use, vehicle mode running simulation and general-purpose engine transient mode simulation were carried out by GT-SUITE. As a result, it was found that by controlling the temperatures of the cooling water and intake gas, thermal efficiency can be improved by several percent.