Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

X-Ray Measurements of High Pressure Diesel Sprays

2001-03-05
2001-01-0531
A quantitative and time-resolved technique has been developed to probe the fuel distribution very near the nozzle of a high-pressure diesel injector. This technique uses the absorption of synchrotron x-rays to measure the fuel mass with good time and position resolution. The penetrating power of x-rays allows measurements that are difficult with other techniques, such as quantitative measurements of the mass and penetration measurements of the trailing edge of the spray. Line-of-sight measurements were used to determine the fuel density as a function of time. The high time resolution and quantitative nature of the measurement also permit an accurate measure of the instantaneous mass flow rate through the nozzle.
Technical Paper

Shock Waves Generated by High-Pressure Fuel Sprays Directly Imaged by X-Radiography

2002-06-03
2002-01-1892
Synchrotron x-radiography and a novel fast x-ray detector are used to visualize the detailed, time-resolved structure of the fluid jets generated by a high pressure diesel-fuel injection. An understanding of the structure of the high-pressure spray is important in optimizing the injection process to increase fuel efficiency and reduce pollutants. It is shown that x-radiography can provide a quantitative measure of the mass distribution of the fuel. Such analysis has been impossible with optical imaging due to the multiple-scattering of visible light by small atomized fuel droplets surrounding the jet. In addition, direct visualization of the jet-induced shock wave proves that the fuel jets become supersonic under appropriate injection conditions. The radiographic images also allow quantitative analysis of the thermodynamic properties of the shock wave.
Technical Paper

Quantitative Measurements of Direct-Injection Gasoline Fuel Sprays in Near-Nozzle Region Using Synchrotron X-Ray

2001-03-05
2001-01-1293
A quantitative and time-resolved technique has been developed to probe the dense spray structure of direct-injection (DI) gasoline sprays in near-nozzle region. This technique uses the line-of-sight absorption of monochromatic x-rays from a synchrotron source to measure the fuel mass with time resolution better than 1 μs. The small scattering cross-section of fuel at x-rays regime allows direct measurements of spray structure that are difficult with most visible-light optical techniques. Appropriate models were developed to determine the fuel density as a function of time.
X