Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A New Type Partial Flow Dilution Tunnel with Geometrical Partitioning for Diesel Particulate Measurement

2001-09-24
2001-01-3579
The authors have developed a new partial flow dilution tunnel (hereafter referred to as PPFT), whose principal device is a flux splitting gas divider, as a new means of measuring particulate emissions which can be applied to transient cycle testing of diesel engines. The advantage of this system is that it can achieve perfect constant velocity splitting by means of its structure, and theoretically can also maintain high splitting performance despite fluctuations in the exhaust flow rate, including those due to engine exhaust pulsation. We compared this system with a full tunnel by analyzing the basic performance of the system and measuring particulate matter (PM) using an actual vehicle engine.
Technical Paper

Advanced Diesel Combustion Using of Wide Range, High Boosted and Cooled EGR System by Single Cylinder Engine

2006-04-03
2006-01-0077
For reducing exhaust emissions of heavy-duty diesel engines, the authors made an experimental study of diesel combustion using a single cylinder engine. The engine performance and exhaust emissions have been measured using a wide range and high EGR rate under the conditions of high boost intake pressure. The engine test cell has been equipped the external supercharger that is able to raise the boost pressure to 500 kPa, and also equipped the EGR system to increase the EGR rate until 50% under the 500 kPa boost condition. In various test conditions of load and engine speeds the authors have obtained the results, that is, NOx has been reduced drastically without increasing Particulate Matter (PM).
Journal Article

Analysis of Behavior of Fuel Consumption and Exhaust Emissions under On-road Driving Conditions Using Real Car Simulation Bench (RC-S)

2009-09-13
2009-24-0139
The investigation of vehicle performances under on-road conditions has been required for emission reduction and energy saving in the real world. In this study, Real Car Simulation Bench (RC-S) was developed as an instrument for actual vehicle bench tests under on-road driving conditions, which could not be performed by using conventional chassis dynamometer (CH-DY). The experimental results obtained by RC-S were compared with the on-road driving data on the same car as used in RC-S tests. As a result, it was confirmed that RC-S could accurately reproduce the behavior of fuel consumption and exhaust emissions under on-road driving conditions.
Technical Paper

Analysis of Knocking Mechanism Applying the Chemical Luminescence Method

1995-02-01
951005
One of the most effective means of improving the thermal efficiency and the specific fuel consumption in spark ignition engines is the increase of the compression ratio. However, there is a limit to it because of the generation of knocking combustion due to the rise of temperature and pressure in the unburnt mixture. Also in turbo charged spark ignition engines, the ignition timing cannot be advanced until MBT in order to avoid the knocking phenomena. Generally speaking, it is very difficult to investigate the phenomena in an actual engine, because there are many restriction and the phenomena are too complex and too fast. According-ly, it is advantageous to reveal the phenomena fundamentally, including the autoignition process of the end-gas by using simplified model equipment. Therefore, a rapid compression and expansion machine (RCEM) with a pan-cake combustion chamber was designed and developed for the experiments presented here.
Technical Paper

Application of Biodiesel Fuel to Modern Diesel Engine

2006-04-03
2006-01-0233
The 1997 Kyoto protocol came into effect in February, 2005 to reduce greenhouse gases within the period 2008-2012 by at least 5 % with respect to 1990 levels. Application of biodiesel fuel (BDF) to diesel engine is very effective to reduce CO2 emission, because BDF is carbon neutral in principle. The purpose of this project is to produce a light-duty biodiesel truck which can be suitable for emission regulation in next generation. The effect of BDF on the performance and emissions of modern diesel engine which was equipped with the aftertreatment for PM and NOx emissions was investigated without modifications of engine components and parameters, as a first step for research and development of biodiesel engine. Rapeseed oil methyl ester (RME) was selected in behalf of BDF, and combustion characteristics, engine performance and exhaust emissions were made a comparison between RME and petroleum diesel fuel by steady operation and Japan transient mode (JE05) tests.
Technical Paper

Application of Surovikin's Carbon Black Model for Simulating Soot Emission from Diesel Engine Using a Three Dimensional KIVA Code

2003-05-19
2003-01-1851
A soot model based on the kinetics of the formation of particles of carbon black, starting from radical nuclei to particle nuclei, is formulated and implemented to a 3 dimensional KIVA code. Model is capable of predicting total in-cylinder soot concentration and particle size distribution. Empirical parameters were tuned for the total soot emission of a single cylinder DI diesel engine. Model predicted results are quite consistent with reported experimental observations.
Technical Paper

Artificial Control of Diesel Spray and Flame Feature by using Dual-component Fuel

2015-09-01
2015-01-1916
Fuel design approach has been proposed as the control technique of spray and combustion processes in diesel engine to improve thermal efficiency and reduce exhaust emissions. In order to kwow if this approach is capable of controlling spray flame structure and interaction between the flame and a combustion chamber wall, the present study investigated ignition and flame characteristics of dual-component fuels, while varying mixing fraction, fuel temperature and ambient conditions. Those characteristics were evaluated through chemiluminescence photography and luminous flame photography. OH radical images and visible luminous flame images were analyzed to reveal flame shape aspect ratio and its fractal dimension.
Technical Paper

Atomization of Spray under Low-Pressure Field from Pintle Type Gasoline Injector

1992-02-01
920382
This paper presents an atomization mechanism of a spray injected into the low-pressure field, as the subject of injection system in a suction manifold of gasoline engine. Pure liquid fuel, which is n-Pentane or n-Hexane is injected into quiescent gaseous atmosphere at room-temperature and low- pressure through pintle type electronic control injector. Fuel sprays are observed by taking photographs for variation of the back pressure and the changes in spray characteristics with the back pressure below atmospheric pressure are examined in detail. In particular, in the case of the back pressure below the saturated vapor pressure of fuel, the atomization mechanism is discussed from a viewpoint of flash boiling phenomena, those are bubble growth rate and so on.
Technical Paper

BSFC Improvement and NOx Reduction by Sequential Turbo System in a Heavy Duty Diesel Engine

2012-04-16
2012-01-0712
Reduction of exhaust emissions and BSFC has been studied using a high boost, a wide range and high-rate EGR in a Super Clean Diesel, six-cylinder heavy duty engine. In the previous single-turbocharging system, the turbocharger was selected to yield maximum torque and power. The selected turbocharger was designed for high boosting, with maximum pressure of about twice that of the current one, using a titanium compressor. However, an important issue arose in this system: avoidance of high boosting at low engine speed. A sequential and series turbo system was proposed to improve the torque at low engine speeds. This turbo system has two turbochargers of different sizes with variable geometry turbines. At low engine speed, the small turbocharger performs most of the work. At medium engine speed, the small turbocharger and large turbocharger mainly work in series.
Technical Paper

CO2 Mixed Fuel Combustion System for Reduction of NO and Soot Emission in Diesel Engine

1997-02-24
970319
We propose a new concept on simultaneous reduction of NO and soot emissions in Diesel engine exhaust by the diesel fuel oil (n-Tridecane) with liquefied CO2 dissolved. The CO2 dissolved fuel is expected to undergo flash boiling or gas separation when being injected into the combustion chamber and improve spray atomization and mixing process both of which are primary factors to govern soot formation. Also the internal EGR effect caused by CO2 injected with the fuel is expected to NO formation. In order to assess this concept, combustion experiments were carried out using a rapid compression and expansion machine. Thus, flame characteristics and heat release rate were analyzed for the combustion process of diesel fuel and CO2 mixed fuel. And, it is revealed that the diesel fuel-liquefied CO2 mixed fuel can successfully reduce NO emission in a diesel combustion system.
Technical Paper

Characteristics of Combustion in an IDI Diesel Engine with a Swirl Chamber Made of Ceramics

1992-02-01
920696
There is a concept that the increase in the temperature of charge in a combustion chamber and the shield of heat transferred through a chamber wall can facilitate the oxidation of soot and reduce the discharge of soot from the engine. In the experiments presented here in, an IDI diesel engine was used to inspect the concept. The engine was installed a bigger sized cylindrical swirl chamber which was equipped with two flat quarts windows, in order to observe the combustion phenomena and to apply the optical measurement. The experiments were carried out using two types of divided chambers, that is, the swirl chamber made of ceramics and that made of steel, to examine the the effects mentioned above.
Technical Paper

Characteristics of Free and Impinging Gas Jets by Means of Image Processing

1997-02-24
970045
A transient gas jet seems to be a model of a diesel spray because it has no vaporization process. Recently, CNG is utilized in a diesel engine. In the case of diesel engine, sprays or jets have the free state in some cases, and they are impinging surely on the piston surface in the other cases. The 2-D image of acetylene gas with tracer particles was taken by high-speed photography. In both jets, the outer shape was measured on the images and the characteristics of the internal flow was obtained by particle image velocimetry. Then, the physical models of these jets were constructed by use of experimental results.
Technical Paper

Characteristics of Transient Gas Diffusion Flame

1997-10-01
972965
CNG is one of the future fuel for a CI engine. Recently, the general tendency is the use of the high pressure injection system over 100 MPa in a CI engine for the near future severe regulation. Combustion phenomenon in a CI engine with such injection system is like a transient gas diffusion flame. The flow in a gas diffusion flame was investigated by the particle image velocimetry on its 2-D images, the relative soot concentration, the temperature and the relative CO2 concentration was detected in the experiments. And the model of transient gas diffusion flame was constructed by use of experimental data.
Technical Paper

Combustion Improvement and Exhaust Emissions_Characteristics in a Direct Injection Natural Gas Engine by Throttling and Exhaust Gas Recirculation

2001-03-05
2001-01-0737
A natural gas direct injection test engine equipped with a newly developed natural gas injector was built. High total hydrocarbon (THC) emission at part-load and high NOx emission at high-load remain as problems for direct injection natural gas engines. THC reduction and combustion improvement by throttling and NOx reduction by EGR were investigated. The following results were obtained: (1) the combustion at light and medium load conditions is improved by throttling. It is possible to improve the thermal efficiency at light-load in spite of the pumping loss by throttling. THC emissions are greatly decreased in this condition; (2) a large NOx reduction can be obtained without combustion deterioration by appropriate EGR at high-load conditions; and (3) it is possible to decrease both THC and NOx emissions by both throttling and EGR at part-load conditions.
Technical Paper

Combustion in a Small DI Diesel Engine at Starting

1992-02-01
920697
It is unavoidable that a DI diesel engine exhausts a blue and white smoke at starting, especially in the cold atmosphere. In the experiments presented here, a small DI diesel engine started under the conditions of coolant and suction air whose minimum temperatures were 255 K and 268 K, respectively. The flame was photographed by high-speed photography, the temperature of flame and the soot concentration were measured by two-color method, and CO2 concentration was detected by luminous method. The engine cannot be started over several cycles when the coolant temperature is 255 K and suction air temperature is 268 K. As the temperature of coolant and suction air are decreasing, the maxima of the cylinder pressure, the flame temperature, the soot concentration and CO2 concentration are decreasing. Luminous small dots or small lumps of flame become scattered in the piston cavity.
Technical Paper

Comparative Measurement of Nano-Particulates in Diesel Engine Exhaust Gas by Laser-Induced Incandescence (LII) and Scanning Mobility Particle Sizer (SMPS)

2004-06-08
2004-01-1982
Particulate Matter (PM) from diesel engines is thought to be seriously hazardous for human health. Generally, it is said that the hazard depends on the total number and surface area of particles rather than total mass of PM. In the conventional gravimetric method, only the total mass of PM is measured. Therefore, it is very important to measure not only the mass of PM but also size and number density of particulates. Laser-Induced Incandescence (LII) is a useful diagnostic for transient measurement of soot particulate volume fraction and primary particle size. On the other hand, Scanning Mobility Particle Sizer (SMPS) is also used to measure the size distribution of soot aggregate particulates at a steady state condition. However, the measurement processes and the phenomena used to acquire the information on soot particulate are quite different between the LII and SMPS methods. Therefore, it is necessary to understand the detailed characteristics of both LII and SMPS.
Technical Paper

Comparison of Numerical Results and Experimental Data on Emission Production Processes in a Diesel Engine

2001-03-05
2001-01-0656
Simulations of DI Diesel engine combustion have been performed using a modified KIVA-II package with a recently developed phenomenological soot model. The phenomenological soot model includes generic description of fuel pyrolysis, soot particle inception, coagulation, and surface growth and oxidation. The computational results are compared with experimental data from a Cummins N14 single cylinder test engine. Results of the simulations show acceptable agreement with experimental data in terms of cylinder pressure, rate of heat release, and engine-out NOx and soot emissions for a range of fuel injection timings considered. The numerical results are also post-processed to obtain time-resolved soot radiation intensity and compared with the experimental data analyzed using two-color optical pyrometry. The temperature magnitude and KL trends show favorable agreement.
Technical Paper

Continuous Measurement of Diesel Particulate Emissions by an Electrical Low-Pressure Impactor

2000-03-06
2000-01-1138
In addition to PM total matter, PM size distribution is recently receiving increased attention because of the dependency of PM size on human health effects. Thus, PM size distributions and the emission behavior under various driving patterns are becoming important in diesel particulate emissions. Electrical Low Pressure Impactor (ELPI)_is a candidate to measure continuously, not only PM mass, but also particulate size distribution. Therefore, we investigated using ELPI to measure diesel particulate mass and size distribution, together with time series behaviors under various driving patterns. This study demonstrated the feasibility of continuous measurement of PM size distribution by means of an ELPI. The typical PM size distribution curve on weight base has a peak of 0.18 micrometer. The typical PM size distribution curve on number base has a peak of 0.11 micrometer. Engine load influences these characteristics.
Technical Paper

Controlling PCCI Combustion with Mixed Fuel - Application of Flashing Spray to Early Injection

2007-04-16
2007-01-0624
A diesel engine operating in premixed charge compression ignition (PCCI) mode promises the reduction of engine-out emissions of NOx and particulate matter. A serious issue for PCCI operation with the early injection timing during the compression stroke is the difficulty of controlling the mixture formation process. In this study, a mixed fuel consisting of high volatility fuel and high ignitability one is applied in order to develop a control technique for the mixture preparation. In particular, we focuses on a flash boiling phenomenon of mixed fuel. For pure substance, the quality of flashing spray is dominated by the degree of superheat. In contrast, that of mixed fuel is affected much by low boiling point fuel.
Technical Paper

Degradation of DeNOx Performance of a Urea-SCR System in In-Use Heavy-Duty Vehicles Complying with the New Long-Term Regulation in Japan and Estimation of its Mechanism

2016-04-05
2016-01-0958
Degradation of the deNOx performance has been found in in-use heavy-duty vehicles with a urea-SCR system in Japan. The causes of the degradation were studied, and two major reasons are suggested here: HC poisoning and deactivation of pre-oxidation catalysts. Hydrocarbons that accumulated on the catalysts inhibited the catalysis. Although they were easily removed by a simple heat treatment, the treatment could only partially recover the original catalytic performance for the deNOx reaction. The unrecovered catalytic activity was found to result from the decrease in conversion of NO to NO2 on the pre-oxidation catalyst. The pre-oxidation catalyst was thus studied in detail by various techniques to reveal the causes of the degradation: Exhaust emission tests for in-use vehicles, effect of heat treatment on the urea-SCR systems, structural changes and chemical changes in active components during the deactivation were systematically investigated.
X