Refine Your Search

Topic

Search Results

Technical Paper

Trajectory of a Ringless Piston within the Cylinder of an Internal Combustion Engine with a Crosshead Design

1988-02-01
880194
A theoretical analysis is presented for calculating the trajectory of a ringless piston within the cylinder clearance of an I.C. engine with a crosshead design. The flexible polytope unconstrained minimization method is used to find the equilibrium between the piston rod structural elasticity and the gas-film hydrodynamics at the piston-cylinder interface. It was found that even when the crosshead bearing is not concentric with the cylinder (i.e., there is an initial eccentricity between the piston and cylinder centerlines), the piston does not touch the cylinder wall during an engine cycle. However, this happens only when a carefully designed piston skirt profile and piston rod length and diameter are used.
Technical Paper

System Reliability-Based Design using a Single-Loop Method

2007-04-16
2007-01-0555
An efficient approach for series system reliability-based design optimization (RBDO) is presented. The key idea is to apportion optimally the system reliability among the failure modes by considering the target values of the failure probabilities of the modes as design variables. Critical failure modes that contribute the most to the overall system reliability are identified. This paper proposes a computationally efficient, system RBDO approach using a single-loop method where the searches for the optimum design and for the most probable failure points proceed simultaneously. Specifically, at each iteration the optimizer uses approximated most probable failure points from the previous iteration to search for the optimum. A second-order Ditlevsen upper bound is used for the joint failure probability of failure modes. Also, an easy to implement active strategy set is employed to improve algorithmic stability.
Technical Paper

Structural Vibration of an Engine Block and a Rotating Crankshaft Coupled Through Elastohydrodynamic Bearings

2003-05-05
2003-01-1724
A comprehensive formulation is presented for the dynamics of a rotating flexible crankshaft coupled with the dynamics of an engine block through a finite difference elastohydrodynamic main bearing lubrication algorithm. The coupling is based on detailed equilibrium conditions at the bearings. The component mode synthesis is employed for modeling the crankshaft and block dynamic behavior. A specialized algorithm for coupling the rigid and flexible body dynamics of the crankshaft within the framework of the component mode synthesis has been developed. A finite difference lubrication algorithm is used for computing the oil film elastohydrodynamic characteristics. A computationally accurate and efficient mapping algorithm has been developed for transferring information between a high - density computational grid for the elastohydrodynamic bearing solver and a low - density structural grid utilized in computing the crankshaft and block structural dynamic response.
Technical Paper

Simulation of Tire-Snow Interfacial Forces for a Range of Snow Densities with Uncertainty

2006-04-03
2006-01-0497
The objective of this paper is to assess the effect of snow density on tire-snow interaction in the presence of uncertainty. The snow-depth dependent finite element analysis (FEA) and semi-analytical models we have developed recently can predict tire-snow interfacial forces at a given density under combined slip conditions. One drawback of the models is that they are only applicable for fresh, low-density snow due to the unavailability of a density-dependent snow model. In reality, the snow density on the ground can vary between that of fresh snow to heavily compacted snow that is similar to ice. Even for fresh snow on the ground, as a vehicle moves forward, the rear wheels experience higher snow densities than the front wheels. In addition, being a natural material, snow's physical properties vary significantly even for the same density.
Technical Paper

Reliability Based Design Optimization of Dynamic Vehicle Performance Using Bond Graphs and Time Dependent Metamodels

2006-04-03
2006-01-0109
A vehicle drivetrain is designed to meet specific vehicle performance criteria which usually involve trade-offs among conflicting performance measures. This paper describes a methodology to optimize the drivetrain design including the axle ratio, transmission shift points and transmission shift ratios considering uncertainty. A complete vehicle dynamic model is developed using the bond graph method. The model includes the vehicle, engine, transmission, torque converter, driveline, and transmission controller. An equivalent MATLAB Simulink model performs the nonlinear dynamic analysis. In order to reduce the computational effort, a time-dependent metamodel is developed based on principal component analysis using singular value decomposition. The optimization is performed using both the Simulink vehicle dynamic model and the metamodel. A deterministic optimization first determines the optimum design in terms of fuel economy, without considering variations or uncertainties.
Technical Paper

Reliability Analysis of Systems with Nonlinear Limit States; Application to Automotive Door Closing Effort

2003-03-03
2003-01-0142
In this paper, an efficient method for the reliability analysis of systems with nonlinear limit states is described. It combines optimization-based and simulation-based approaches and is particularly applicable for problems with highly nonlinear and implicit limit state functions, which are difficult to solve by conventional reliability methods. The proposed method consists of two major parts. In the first part, an optimization-based method is used to search for the most probable point (MPP) on the limit state. This is achieved by using adaptive response surface approximations. In the second part, a multi-modal adaptive importance sampling method is proposed using the MPP information from the first part as the starting point. The proposed method is applied to the reliability estimation of a vehicle body-door subsystem with respect to one of the important quality issues -- the door closing effort.
Journal Article

Probabilistic Reanalysis Using Monte Carlo Simulation

2008-04-14
2008-01-0215
An approach for Probabilistic Reanalysis (PRA) of a system is presented. PRA calculates very efficiently the system reliability or the average value of an attribute of a design for many probability distributions of the input variables, by performing a single Monte Carlo simulation. In addition, PRA calculates the sensitivity derivatives of the reliability to the parameters of the probability distributions. The approach is useful for analysis problems where reliability bounds need to be calculated because the probability distribution of the input variables is uncertain or for design problems where the design variables are random. The accuracy and efficiency of PRA is demonstrated on vibration analysis of a car and on system reliability-based optimization (RBDO) of an internal combustion engine.
Technical Paper

Probabilistic Computations for the Main Bearings of an Operating Engine Due to Variability in Bearing Properties

2004-03-08
2004-01-1143
This paper presents the development of surrogate models (metamodels) for evaluating the bearing performance in an internal combustion engine. The metamodels are employed for performing probabilistic analyses for the engine bearings. The metamodels are developed based on results from a simulation solver computed at a limited number of sample points, which sample the design space. An integrated system-level engine simulation model, consisting of a flexible crankshaft dynamics model and a flexible engine block model connected by a detailed hydrodynamic lubrication model, is employed in this paper for generating information necessary to construct the metamodels. An optimal symmetric latin hypercube algorithm is utilized for identifying the sampling points based on the number and the range of the variables that are considered to vary in the design space.
Technical Paper

Probabilistic Analysis for the Performance Characteristics of Engine Bearings due to Variability in Bearing Properties

2003-05-05
2003-01-1733
This paper presents the development of surrogate models (metamodels) for evaluating the bearing performance in an internal combustion engine without performing time consuming analyses. The metamodels are developed based on results from actual simulation solvers computed at a limited number of sample points, which sample the design space. A finite difference bearing solver is employed in this paper for generating information necessary to construct the metamodels. An optimal symmetric Latin hypercube algorithm is utilized for identifying the sampling points based on the number and the range of the variables that are considered to vary in the design space. The development of the metamodels is validated by comparing results from the metamodels with results from the actual bearing performance solver over a large number of evaluation points. Once the metamodels are established they are employed for performing probabilistic analyses.
Journal Article

Prediction of Automotive Side Swing Door Closing Effort

2009-04-20
2009-01-0084
The door closing effort is a quality issue concerning both automobile designers and customers. This paper describes an Excel based mathematical model for predicting the side door closing effort in terms of the required minimum energy or velocity, to close the door from a small open position when the check-link ceases to function. A simplified but comprehensive model is developed which includes the cabin pressure (air bind), seal compression, door weight, latch effort, and hinge friction effects. The flexibility of the door and car body is ignored. Because the model simplification introduces errors, we calibrate it using measured data. Calibration is also necessary because some input parameters are difficult to obtain directly. In this work, we provide the option to calibrate the hinge model, the latch model, the seal compression model, and the air bind model. The door weight effect is geometrically exact, and does not need calibration.
Journal Article

Piston Design Using Multi-Objective Reliability-Based Design Optimization

2010-04-12
2010-01-0907
Piston design is a challenging engineering problem which involves complex physics and requires satisfying multiple performance objectives. Uncertainty in piston operating conditions and variability in piston design variables are inevitable and must be accounted for. The piston assembly can be a major source of engine mechanical friction and cold start noise, if not designed properly. In this paper, an analytical piston model is used in a deterministic and probabilistic (reliability-based) multi-objective design optimization process to obtain an optimal piston design. The model predicts piston performance in terms of scuffing, friction and noise, In order to keep the computational cost low, efficient and accurate metamodels of the piston performance metrics are used. The Pareto set of all optimal solutions is calculated allowing the designer to choose the “best” solution according to trade-offs among the multiple objectives.
Journal Article

Optimal and Robust Design of the PEM Fuel Cell Cathode Gas Diffusion Layer

2008-04-14
2008-01-1217
The cathode gas diffusion layer (GDL) is an important component of polymer electrolyte membrane (PEM) fuel cell. Its design parameters, including thickness, porosity and permeability, significantly affect the reactant transport and water management, thus impacting the fuel cell performance. This paper presents an optimization study of the GDL design parameters with the objective of maximizing the current density under a given voltage. A two-dimensional single-phase PEM fuel cell model is used. A multivariable optimization problem is formed to maximize the current density at the cathode under a given electrode voltage with respect to the GDL parameters. In order to reduce the computational effort and find the global optimum among the potential multiple optima, a global metamodel of the actual CFD-based fuel cell simulation, is adaptively generated using radial basis function approximations.
Technical Paper

Optimal Engine Torque Management for Reducing Driveline Clunk Using Time - Dependent Metamodels

2007-05-15
2007-01-2236
Quality and performance are two important customer requirements in vehicle design. Driveline clunk negatively affects the perceived quality and must be therefore, minimized. This is usually achieved using engine torque management, which is part of engine calibration. During a tip-in event, the engine torque rate of rise is limited until all the driveline lash is taken up. However, the engine torque rise, and its rate can negatively affect the vehicle throttle response. Therefore, the engine torque management must be balanced against throttle response. In practice, the engine torque rate of rise is calibrated manually. This paper describes a methodology for calibrating the engine torque in order to minimize the clunk disturbance, while still meeting throttle response constraints. A set of predetermined engine torque profiles are calibrated in a vehicle and the transmission turbine speed is measured for each profile. The latter is used to quantify the clunk disturbance.
Technical Paper

Oil Film Dynamic Characteristics for Journal Bearing Elastohydrodynamic Analysis Based on a Finite Difference Formulation

2003-05-05
2003-01-1669
A fast and accurate journal bearing elastohydrodynamic analysis is presented based on a finite difference formulation. The governing equations for the oil film pressure, stiffness and damping are solved using a finite difference approach. The oil film domain is discretized using a rectangular two-dimensional finite difference mesh. In this new formulation, it is not necessary to generate a global fluidity matrix similar to a finite element based solution. The finite difference equations are solved using a successive over relaxation (SOR) algorithm. The concept of “Influence Zone,” for computing the dynamic characteristics is introduced. The SOR algorithm and the “Influence Zone” concept significantly improve the computational efficiency without loss of accuracy. The new algorithms are validated with numerical results from the literature and their numerical efficiency is demonstrated.
Technical Paper

Monte Carlo Simulation of Overstress Probe Testing for Fatigue Strength

2006-04-03
2006-01-1335
The overstress probe fatigue testing method, although codified to characterize fatigue strength, is poorly understood. While it yields data confirming whether minimum fatigue strength may be met, it does not directly reveal the mean fatigue strength. Procedures for conducting the test are somewhat arbitrary and rely on fitting a 3-parameter Weibull model. In this paper, a Monte Carlo procedure is developed to simulate the overstress probe test. The effect of various parameters used in the test is also discussed. A comparison is made between Weibull and Gaussian models. Suggestions for conducting the overstress probe test are provided.
Technical Paper

Modeling and Optimization of Vehicle Drivetrain Dynamic Performance Considering Uncertainty

2005-05-16
2005-01-2371
A vehicle drivetrain is designed to meet specific vehicle performance criteria which usually involve trade-offs among conflicting performance measures. This paper describes a methodology to optimize the drivetrain design including the axle ratio, transmission shift points and transmission shift ratios considering uncertainty. A complete vehicle dynamic model is developed using the bond graph method. The model includes the vehicle, engine, transmission, torque converter, driveline, and transmission controller. An equivalent MATLAB Simulink model is also developed in order to carry out the nonlinear dynamic analysis efficiently. A deterministic optimization is first performed to determine the optimum design in terms of fuel economy, without considering variations or uncertainties. Subsequently, a Reliability-Based Design Optimization is carried out to find the optimum design in the presence of uncertainty.
Technical Paper

Improving Robust Design with Preference Aggregation Methods

2004-03-08
2004-01-1140
Robust design is a methodology for improving the quality of a product or process by minimizing the effect of variations in the inputs without eliminating the causes of those variations. In robust design, the putative best design is obtained by solving a multi-criteria optimization problem, trading off the nominal performance against the minimization of the variation of the performance measure. Because some existing methods combine the two criteria with a weighted sum or another fixed aggregation strategy, which are known to miss Pareto points, they may fail to obtain a desired design. To overcome this inadequacy, a more comprehensive preference aggregation method is implemented here into robust design. Three examples -- one simple mathematical example, one multi-criteria structure design example, and one automotive example -- are presented to illustrate the effectiveness of the proposed method.
Technical Paper

Imprecise Reliability Assessment When the Type of the Probability Distribution of the Random Variables is Unknown

2009-04-20
2009-01-0199
In reliability design, often, there is scarce data for constructing probabilistic models. It is particularly challenging to model uncertainty in variables when the type of their probability distribution is unknown. Moreover, it is expensive to estimate the upper and lower bounds of the reliability of a system involving such variables. A method for modeling uncertainty by using Polynomial Chaos Expansion is presented. The method requires specifying bounds for statistical summaries such as the first four moments and credible intervals. A constrained optimization problem, in which decision variables are the coefficients of the Polynomial Chaos Expansion approximation, is formulated and solved in order to estimate the minimum and maximum values of a system’s reliability. This problem is solved efficiently by employing a probabilistic re-analysis approach to approximate the system reliability as a function of the moments of the random variables.
Journal Article

Efficient Re-Analysis Methodology for Probabilistic Vibration of Large-Scale Structures

2008-04-14
2008-01-0216
It is challenging to perform probabilistic analysis and design of large-scale structures because probabilistic analysis requires repeated finite element analyses of large models and each analysis is expensive. This paper presents a methodology for probabilistic analysis and reliability based design optimization of large scale structures that consists of two re-analysis methods; one for estimating the deterministic vibratory response and another for estimating the probability of the response exceeding a certain level. The deterministic re-analysis method can analyze efficiently large-scale finite element models consisting of tens or hundreds of thousand degrees of freedom and large numbers of design variables that vary in a wide range. The probabilistic re-analysis method calculates very efficiently the system reliability for many probability distributions of the design variables by performing a single Monte Carlo simulation.
Technical Paper

Dynamic Properties of Styrene-Butadiene Rubber for Automotive Applications

2009-05-19
2009-01-2128
Styrene-Butadiene Rubber (SBR) is a copolymer of butadiene and styrene. It has a wide range of applications in the automotive industry due to its high durability, resistance to abrasion, oils and oxidation. SBR applications vary from tires to vibration isolators and gaskets. SBR is also used in tuned dampers which aim to reduce and control the angular vibrations of crankshafts, acting as an isolator and energy absorber between the tune damper's hub and the inertia ring. The dynamic properties of this polymer are therefore, very important in developing an appropriate analytical model. This paper presents the results of a series of experiments performed to determine the dynamic stiffness and damping properties of SBR. The frequency, temperature and displacement dependent properties are determined in a low frequency range from 0.4 to 150 Hz, and in a mid frequency range from 150 to 550 Hz. The most interesting property of SBR is its frequency dependent behavior.
X