Refine Your Search

Topic

Search Results

Journal Article

Water Body Survey, Inspection, and Monitoring Using Amphibious Hybrid Unmanned Aerial Vehicle

2021-02-04
Abstract Water quality monitoring is needed for the effective management of water resources. Periodic sampling and regular inspection/analysis allow one to classify water and identify changes or trends in water quality over time. This article presents a novel concept of an Amphibious Hybrid Unmanned Aerial Vehicle (AHUAV) that can operate in air and water for rapid water sampling, real-time water quality analysis, and water body management. A methodology using the developed AHUAV system for water body management has also been proposed for an easier and effective way of monitoring water bodies using advanced drone technologies. Using drones for water body management can be a cost-effective and efficient way of carrying out regular inspections and continual monitoring.
Journal Article

Vertical Takeoff and Landing Aircraft, Vertical Takeoff and Landing Ground Effects

2020-08-20
Abstract The ground-effect problems of loss of thrust and fountain-effect instabilities are quantified. Experiments to control and augment ground-effect lift and stability are presented, including jet momentum reflection and fountain redirection using various types of internal and external underbody ventral strakes. By strategically designing the vertical takeoff and landing (VTOL) ventral surface, reflection of the impinging fountain momentum is possible so that instead of losing 10% thrust while in ground-effect, remarkably, thrust is augmented 10% or more to a considerable height above the ground, in addition to stabilizing random pitch and roll moments caused by fountain instability.
Journal Article

Using Numerical Simulation to Obtain Length of Constant Area Section in Scramjet Combustor

2020-03-16
Abstract Constant area section length downstream to the fuel injection point is a crucial dimension of scramjet duct geometry. It has a major contribution in creating the maximum effective pressure inside the combustor that is required for propulsion. The length is limited by the thermal choking phenomenon, which occurs when heat is added in a flow through constant area duct. As per theory, to avoid thermal choking the constant area section length depends upon the inlet conditions and the rate of heat addition. The complexity related to mixing and combustion process inside the supersonic stream makes it difficult to predict the rate of heat addition and in turn the length. Recent efforts of simulating the reacting flow inside scramjet combustors are encouraging and can be useful in this regard. The presented work attempts to use simulation results of scramjet combustion for predicting the constant area section length for a typical scramjet combustor.
Journal Article

Understanding the Impact of Standardized SAE Waveform Parameter Variation on Artificial Lightning Plasma, Specimen Loading, and Composite Material Damage

2020-02-18
Abstract Previous works have established strategies to model artificial test lightning plasma with specific waveform parameters and use the predicted plasma behavior to estimate test specimen damage. To date no computational works have quantified the influence of varying the waveform parameters on the predicted plasma behavior and resulting specimen damage. Herein test standard Waveform B has been modelled and the waveform parameters of “waveform peak,” “rise time,” and “time to reach the post-peak value” have been varied. The plasma and specimen behaviors have been modelled using the Finite Element (FE) method (a Magnetohydrodynamic FE multiphysics model for the plasma, a FE thermal-electric model for the specimen). For the test arrangements modelled herein, it has been found that “peak current” is the key parameter influencing plasma properties and specimen damage.
Journal Article

Toward a Machine Learning Development Lifecycle for Product Certification and Approval in Aviation

2022-05-26
Abstract This article presents a new machine learning (ML) development lifecycle which will constitute the core of the new aeronautical standard on ML called AS6983, jointly being developed by working group WG-114/G34 of EUROCAE and SAE. The article also presents a survey of several existing standards and guidelines related to ML in aeronautics, automotive, and industrial domains by comparing and contrasting their scope, purpose, and results.
Journal Article

Three-Dimensional Thermal Study on Lithium-Ion Batteries in a Hybrid Aircraft: Numerical and Experimental Investigations

2020-10-19
Abstract The range of an aircraft is determined by the amount of energy that its batteries can store. Today, larger batteries are used to increase the range of electric vehicles, although energy efficiency decreases as the weight of the vehicles increases. Among the elements, lithium (Li) is the lightest and has the highest electrochemical potential. Therefore, the use of Li-ion batteries is recommended for hybrid aircraft. In addition, Li-ion batteries are the most common type of battery that is used in portable electronic devices such as smartphones, tablets, and laptops. However, Li-ion batteries may explode due to temperature. Therefore, the thermal analysis of Li-ion batteries was investigated both experimentally and numerically. Li-ion batteries were connected in series (the number is 9). Noboru’s theory of heat generation was discussed in the estimation of energy data.
Journal Article

Three Case Studies on Small Uncrewed Aerial Systems Near Midair Collisions with Aircraft: An Evidence-Based Approach for Using Objective Uncrewed Aerial Systems Detection Technology

2023-06-14
Abstract Small uncrewed aircraft systems (sUAS) growth continues for recreational and commercial applications. By 2025, the Federal Aviation Administration (FAA) predicts the sUAS fleet to number nearly 2.4 million units. As sUAS operations expand within the National Airspace System (NAS), so too does the probability of near midair collisions (NMACs) between sUAS and aircraft. Currently, the primary means of recognizing sUAS NMACs rely on pilots to visually spot and evade conflicting sUAS. Pilots may report such encounters to the FAA as UAS Sighting Reports. Sighting reports are of limited value as they are highly subjective and dependent on the pilot to accurately estimate range and altitude information. Moreover, they do not account for NMACs that an aircrew member does not spot.
Journal Article

Threat Identification and Defense Control Selection for Embedded Systems

2020-08-18
Abstract Threat identification and security analysis have become mandatory steps in the engineering design process of high-assurance systems, where successful cyberattacks can lead to hazardous property damage or loss of lives. This article describes a novel approach to perform security analysis on embedded systems modeled at the architectural level. The tool, called Security Threat Evaluation and Mitigation (STEM), associates threats from the Common Attack Pattern Enumeration and Classification (CAPEC) library with components and connections and suggests potential defense patterns from the National Institute of Standards and Technology (NIST) Special Publication (SP) 800-53 security standard. This article also provides an illustrative example based on a drone package delivery system modeled in AADL.
Journal Article

The Missing Link: Aircraft Cybersecurity at the Operational Level

2020-07-25
Abstract Aircraft cybersecurity efforts have tended to focus at the strategic or tactical levels without a clear connection between the two. There are many excellent engineering tools already in widespread use, but many organizations have not yet integrated and linked them into an overarching “campaign plan” that connects those tactical actions such as process hazard analysis, threat modeling, and probabilistic methods to the desired strategic outcome of secure and resilient systems. This article presents the combined systems security engineering process (CSSEP) as a way to fill that gap. Systems theory provides the theoretical foundation on which CSSEP is built. CSSEP is structured as a control loop in which the engineering team is the controller of the design process. The engineering team needs to have an explicit process model on how systems should be secured, and a control algorithm that determines what control actions should be selected.
Journal Article

The Lynchpin—A Novel Geometry for Modular, Tangential, Omnidirectional Flight

2023-03-15
Abstract A novel geometry for a six degrees of freedom (6DOF) unmanned aerial vehicle (UAV) rotary wing aircraft is introduced and a flight mechanical analysis is conducted for an aircraft built in accordance to the thrust vectors of the proposed geometry. Furthermore, the necessary mathematical operations and control schemes are derived to fly an aircraft with the proposed geometry. A system identification of the used propulsion system with the necessary thrust reversal in the form of bidirectional motors and propellers was conducted at a whirl tower. The design of the first prototype aircraft is presented as well as the first flight test results. It could be demonstrated that an aircraft with the thrust vectors oriented according to the proposed geometry works sufficiently and offers unique maneuvering capabilities that cannot be reached with a conventional design.
Journal Article

The Influence of Carbon Fiber Composite Specimen Design Parameters on Artificial Lightning Strike Current Dissipation and Material Thermal Damage

2023-04-29
Abstract Previous artificial lightning strike direct effect research has examined a broad range of specimen design parameters. No works have studied how such specimen design parameters and electrical boundary conditions impact the dissipation of electric current flow through individual plies. This article assesses the influence of carbon fiber composite specimen design parameters (design parameters = specimen size, shape, and stacking sequence) and electrical boundary conditions on the dissipation of current and the spread of damage resulting from Joule heating. Thermal-electric finite element (FE) modelling is used and laboratory scale (<1 m long) and aircraft scale (>1 m long) models are generated in which laminated ply current dissipation is predicted, considering a fixed artificial lightning current waveform. The simulation results establish a positive correlation between the current exiting the specimen from a given ply and the amount of thermal damage in that ply.
Journal Article

Temperature and Consumed Energy Predictions for Air-Cooled Interior Permanent Magnet Motors Driving Aviation Fans—Part 1: Mathematical Analytical Solutions for Incompressible Air Cases

2022-04-13
Abstract The increase in worldwide awareness of environmental issues has necessitated the air transport industry to drastically reduce carbon dioxide emissions. To meet this goal, one solution is the electrification of aircraft propulsion systems. In particular, single-aisle aircraft with partial turboelectric propulsion with approximately 150 passenger seats in the 2030s are the focus. To develop a single-aisle aircraft with partial turboelectric propulsion, an air-cooled interior permanent magnet (IPM) motor with an output of 2 MW is desired. In this article, mathematical system equations that describe heat transfer inside the target air-cooled IPM motor are formulated, and their mathematical analytical solutions are obtained.
Journal Article

Technological Stability of the Liner in a Separable Metal Composite Pressure Vessel

2020-04-21
Abstract The article considers one of the possible mechanisms of loading the solidity of a cylindrical metal composite high-pressure vessel (MC HPV). This mechanism manifests itself as delamination of a thin-walled metal shell (liner) from a more rigid composite shell causing local buckling. A similar effect can be detected in the manufacturing process of MC HPV, when the composite shell is formed by winding with tension a carbon fiber-reinforced plastic tape on the liner. Pressure transfer from the composite shell to the liner is carried out by the method of temperature analogy, that is, by cooling the composite shell, thermally insulated from the liner. To solve the problem of externally confined liner local buckling an approach is proposed, which is based on three points: the introduction of local technological deviations inherent in actual structures, the determination of the general stress-strain state, and a real-time deforming.
Journal Article

TOC

2022-09-07
Abstract TOC
Journal Article

TOC

2021-06-07
Abstract TOC
Journal Article

TOC

2023-12-18
Abstract TOC
Journal Article

TOC

2023-10-24
Abstract TOC
Journal Article

Susceptibility of Aluminum Alloy 7075 T6 to Stress Corrosion Cracking

2020-09-22
Abstract One of the most important aluminum (Al) alloys among the 7XXX series is 7075 in the T6 temper condition. However, 7075 T6 alloy is proven to be susceptible to stress corrosion cracking (SCC) and has caused many service failures of airplanes. In this research, the susceptibility of 7075 T6 alloys to SCC is approached according to many variables of stress, sodium chloride (NaCl) concentration, pH variation, and aeration. The testing method selected was the three-point bending under complete immersion for a period of 40 days. The results indicate that the threshold for SCC in 7075 T6 alloy lies between 220 and 340 MPa in environments containing as low as 0.5% NaCl concentrations in both neutral and acid solutions. The cracking direction found was different from the expected using other techniques such as tensile or notched specimens, which opens a new gate for testing and monitoring SCC in the 7XXX series.
Journal Article

Supervised Learning Classification Applications in Fault Detection and Diagnosis: An Overview of Implementations in Unmanned Aerial Systems

2022-08-18
Abstract Statistical machine learning classification methods have been widely used in the fault detection analysis in several engineering domains. This motivates us to provide in this article an overview on the application of these methods in the fault diagnosis strategies and also their successful use in unmanned aerial vehicles (UAVs) systems. Different existing aspects including the implementation conditions, offline design, and online computation algorithms as well as computation complexity and detection time are discussed in detail. Evaluation and validation of these aspects have been ensured by a simple demonstration of the basic classification methods and neural network techniques in solving the fault detection and diagnosis problem of the propulsion system failure of a multirotor UAV. A testing platform of an Hexarotor UAV is completely realized.
Journal Article

Study on the Influence of Mass Flow Rate over a National Advisory Committee for Aeronautics 6321 Airfoil Using Improved Blowing and Suction System for Effective Boundary Layer Control

2021-08-06
Abstract The numerical analysis of the three-dimensional (3D) flow over a National Advisory Committee for Aeronautics (NACA) 6321 airfoil to evaluate the mass flow rate by using a novel method Improved Blowing and Suction System (IBSS) to control the boundary layer is presented in this study. Analysis is performed based on 3D Reynolds-Averaged Navier-Stokes (RANS) equation with a K-omega SST solver. The aerodynamic performance of the NACA 6321 is analyzed at a Mach number of 0.10 with three different mass flow rates, namely, 0.08 kg/s, 0.10 kg/s, and 0.12 kg/s. From the study, it is seen that when the mass flow rate decreased, the aerodynamics performance also reduced, and the aerodynamic performance improved with the increase in mass flow rate.
X