Refine Your Search

Topic

Search Results

Journal Article

uACPC: Client-Initiated Privacy-Preserving Activation Codes for Pseudonym Certificates Model

2020-07-27
Abstract With the adoption of Vehicle-to-everything (V2X) technology, security and privacy of vehicles are paramount. To avoid tracking while preserving vehicle/driver’s privacy, modern vehicular public key infrastructure provision vehicles with multiple short-term pseudonym certificates. However, provisioning a large number of pseudonym certificates can lead to an enormous growth of Certificate Revocation Lists (CRLs) during its revocation process. One possible approach to avoid such CRL growth is by relying on activation code (AC)-based solutions. In such solutions, the vehicles are provisioned with batches of encrypted certificates, which are decrypted periodically via the ACs (broadcasted by the back-end system). When the system detects a revoked vehicle, it simply does not broadcast the respective vehicle’s AC. As a result, revoked vehicles do not receive their respective AC and are prevented from decrypting their certificates.
Journal Article

Windshield Glare from Bus Interiors: Potential Impact on City Transit Drivers at Night

2019-11-15
Abstract Windshield glare at night is a safety concern for all drivers. Public transit bus drivers also face another concern about glare caused by interior lighting sources originally designed for passenger safety. The extent to which interior light reflections contribute to glare is unknown. Unique methods for measuring discomfort and disability glare during bus driving were developed. An initial simulation study measured windshield luminance inside of a New Flyer D40LF diesel bus parked in a controlled, artificial, totally darkened test environment. Findings indicated significant disability glare (from elevated luminance) in the drivers’ primary field of view due to interior reflections. Any reduction in contrast would result in less prominent glare if actual driving conditions differ. To assess this, levels of windshield glare were also measured with the bus parked on the roadside under the “background glow” of the urban environment.
Journal Article

When and How to Apply Automatic Emergency Brakes Based on Risk Perception and Professional Driver Emergency Braking Behavior

2023-07-26
Abstract The key issues of automatic emergency braking (AEB) control algorithm are when and how to brake. This article proposes an AEB control algorithm that integrates risk perception (RP) and emergency braking characteristics of professional drivers for rear-end collision avoidance. Using the formulated RP by time to collision (TTC) and time headway (THW), the brake trigger time can be determined. Based on the professional driver fitting (PDF) characteristic, the brake pattern can be developed. Through MATLAB/Simulink simulation platform, the European New Car Assessment Programme (Euro-NCAP) test scenarios are used to verify the proposed control algorithm. The simulation results show that compared with the TTC control algorithm, PDF control algorithm, and the integrated PDF and TTC control algorithm, the proposed integrated PDF and RP control algorithm has the best performance, which can not only ensure safety and brake comfort, but also improve the road resource utilization rate.
Journal Article

Wheel Chock Key Design Elements and Geometrical Profile for Truck Vehicle Restraint

2018-06-06
Abstract Wheel chocks are rather simple compliant mechanisms for stabilizing vehicles at rest. However, chocks must be carefully designed given the complex interaction between the chock and the tire/suspension system. Despite their importance for safety, literature is surprisingly limited in terms of what makes a wheel chock efficient. Using simple but reliable quasi-static mechanical models, this study identifies mechanical requirements that help to avoid a number of failure modes associated with many existing wheel chocks. Given that chock grounding is not always possible, a chock’s maximum restraining capacity is only obtained when the wheel is completely supported by the chock. A generic chock profile is proposed to achieve this objective while mitigating undesirable failure modes. The profile is based on fundamental mechanical principles and no assumption is made on the load interaction between the chock and the wheel.
Journal Article

Water Intrusion Injuries: Occupant Kinematics and Pressure Exposure during Rearward Falls from a Personal Watercraft

2023-02-17
Abstract Personal watercraft (PWC) users and other high-speed watersports participants have sustained rectal and vaginal injuries during falls into the water, herein referred to as water intrusion injuries (WIIs). WIIs result from the rapid introduction of water into these lower body cavities causing injury to the soft tissues of the perineum, rectum, and vagina. While case studies of injured water-skiers and PWC users are reported in the literature, there is little information related to passenger kinematics and pressure exposure during a rearward fall from a PWC. The results of an experimental study of passenger falls from two “high-performance” PWC are presented herein. A human passenger was caused to fall rearward as the PWC was accelerated at maximum throttle starting from idle speed (≈3–4 mph) and planing speeds of ≈20–30 mph. The subject passenger fell from the aft seat position and while standing on the rear platform.
Journal Article

Vulnerability of FlexRay and Countermeasures

2019-05-23
Abstract The importance of in-vehicle network security has increased with an increase in automated and connected vehicles. Hence, many attacks and countermeasures have been proposed to secure the controller area network (CAN), which is an existent in-vehicle network protocol. At the same time, new protocols-such as FlexRay and Ethernet-which are faster and more reliable than CAN have also been proposed. European OEMs have adopted FlexRay as a control network that can perform the fundamental functions of a vehicle. However, there are few studies regarding FlexRay security. In particular, studies on attacks against FlexRay are limited to theoretical studies or simulation-based experiments. Hence, the vulnerability of FlexRay is unclear. Understanding this vulnerability is necessary for the application of countermeasures and improving the security of future vehicles. In this article, we highlight the vulnerability of FlexRay found in the experiments conducted on a real FlexRay network.
Journal Article

Virtual Assessment of Automated Driving: Methodology, Challenges, and Lessons Learned

2019-12-18
Abstract Automated driving as one of the most anticipated technologies is approaching its market release in the near future. Since several years, the research in the automotive industry is largely focused on its development and presents well-engineered prototypes. The many aspects of this development do not only concern the function and its components itself, but also the proof of safety and assessment for its market release. It is clear that previous methods used for the release of Advanced Driver Assistance Systems are not applicable. In contrast to already released systems, automated driving is not restricted to a certain field of application in terms of driving scenarios it has to take action in. This results in an infeasible amount of required testing and unforeseeable scenarios the function can face throughout its lifetime. In this article, we show a scenario-based approach that promises to overcome those challenges.
Journal Article

Vehicle Dynamics Control Using Model Predictive Control Allocation Combined with an Adaptive Parameter Estimator

2020-07-08
Abstract Advanced passenger vehicles are complex dynamic systems that are equipped with several actuators, possibly including differential braking, active steering, and semi-active or active suspensions. The simultaneous use of several actuators for integrated vehicle motion control has been a topic of great interest in literature. To facilitate this, a technique known as control allocation (CA) has been employed. CA is a technique that enables the coordination of various actuators of a system. One of the main challenges in the study of CA has been the representation of actuator dynamics in the optimal CA problem (OCAP). Using model predictive control allocation (MPCA), this problem has been addressed. Furthermore, the actual dynamics of actuators may vary over the lifespan of the system due to factors such as wear, lack of maintenance, etc. Therefore, it is further required to compensate for any mismatches between the actual actuator parameters and those used in the OCAP.
Journal Article

Validation on Safety of the Intended Functionality of Automated Vehicles: Concept Development

2022-04-20
Abstract As automated driving technology is evolving quickly and becomes more widely deployed, it is essential to validate the Safety of the Intended Functionality (SOTIF) of Automated Vehicles (AVs) prior to mass production. In general, an exhaustive real-world scenario validation of AVs is considered infeasible due to excessive time consumption. Additionally, simulation tests alone are often regarded as inadequate since it is difficult to model the system and physical properties of vehicles with full fidelity. Therefore, a SOTIF validation method for AVs is proposed in this article, which consists of structure design and scenario determination. A mature, systematic, and complete set of testing and evaluation procedures is presented in structure design, and a scenario generation method is introduced in scenario determination. The SOTIF validation method takes advantage of both simulation tests and on-road tests.
Journal Article

Validation of Crush Energy Calculation Methods for Use in Accident Reconstructions by Finite Element Analysis

2018-10-04
Abstract The crush energy is a key parameter to determine the delta-V in accident reconstructions. Since an accurate car crush profile can be obtained from 3D scanners, this research aims at validating the methods currently used in calculating crush energy from a crush profile. For this validation, a finite element (FE) car model was analyzed using various types of impact conditions to investigate the theory of energy-based accident reconstruction. Two methods exist to calculate the crush energy: the work based on the barrier force and the work based on force calculated by the vehicle acceleration times the vehicle mass. We show that the crush energy calculated from the barrier force was substantially larger than the internal energy calculated from the FE model. Whereas the crush energy calculated from the vehicle acceleration was comparable to the internal energy of the FE model.
Journal Article

Updating the Grade Severity Rating System (GSRS) for Wyoming Mountain Passes: A Description of Tests and Results

2020-05-13
Abstract Truck crashes on Wyoming mountain passes due to brake heating has been a long-standing issue due to the steep downgrades that characterize some routes in the state. The grade severity rating system (GSRS) developed by the Federal Highway Administration (FHWA) to recommend maximum safe speeds has been identified as a viable countermeasure to reducing the incidence of downgrade truck crashes. However, several decades have passed since the GSRS was developed. In the decades since its development, truck features have undergone radical changes in terms of design. The streamlined design of tractors and trailers, use of drag reduction devices, changes in engine features, and adoption of radial tires have led to a reduction in the non-brake forces that retard motion. Truck brakes have also changed along with retarder characteristics. This has meant that maximum safe speeds recommended by the GSRS have been conservative.
Journal Article

Understanding the Influence of Seat Belt Geometries on Belt-to-Pelvis Angle Can Help Prevent Submarining

2022-04-13
Abstract The first objective of this study, addressed in Part 1, is to use finite element (FE) human body modeling (HBM) to evaluate the tangent of the Belt-to-Pelvis angle (tanθBTP) as a submarining predictor in frontal crashes for occupants in reclined seats. The second objective, addressed in Part 2, is to use this predictor to assess two technical solutions for reducing submarining risks for two different occupant anthropometries. In Part 1, tanθBTP (the lap belt penetration from the anterior superior iliac spine [ASIS] in the abdominal direction) was evaluated in impact simulations with varying seat belt anchor positions. Sled simulations with a 56 km/h full-frontal crash pulse were performed with the SAFER HBM morphed to the anthropometry of a small female and average male. A correlation was found between the submarining predictor and submarining.
Journal Article

Two-Way Coupled CFD Approach for Predicting Gear Temperature of Oil Jet Lubricated Transmissions

2018-07-24
Abstract This article focuses on the development of a two-way coupled methodology to predict gear temperature of oil jet lubricated transmissions using commercial software for computational fluid dynamics simulation. The proposed methodology applies an overset mesh technique to model the gear interlocking motion, multiphase of air-oil mixture, and heat transfer. Two gear pairs were used to develop and validate the methodology, an overdrive helical gear pair of a commercial vehicle transmission and a standard spur gear pair. Different oil jet lubrication methods were investigated using the proposed methodology, such as oil jet directed at the into-mesh position and at the out-of-mesh position. This investigation showed that out of mesh lubrication direction shows better cooling performance which is in well agreement with previous studies of literature.
Journal Article

Towards a Blockchain Framework for Autonomous Vehicle System Integrity

2021-05-05
Abstract Traditionally, Electronic Control Units (ECUs) in vehicles have been left unsecured. Ensuring cybersecurity in an ECU network is challenging as there is no centralized authority in the vehicle to provide security as a service. While progress has been made to address cybersecurity vulnerabilities, many of these approaches have focused on enterprise, software-centric systems and require more computational resources than typically available for onboard vehicular devices. Furthermore, vehicle networks have the additional challenge of mitigating security vulnerabilities while satisfying safety and performance constraints. This article introduces a blockchain framework to detect unauthorized modifications to vehicle ECUs. A proof of concept blockchain prototype framework is implemented on a set of microprocessors (comparable to those used by simple ECUs) as a means to assess the efficacy of using our blockchain approach to detect unauthorized updates.
Journal Article

Toward an Automated Scenario-Based X-in-the-Loop Testing Framework for Connected and Automated Vehicles

2022-06-27
Abstract Emerging technologies for connected and automated vehicles (CAVs) are rapidly advancing, and there is an incremental adoption of partial automation systems in existing vehicles. Nevertheless, there are still significant barriers before fully or highly automated vehicles can enter mass production and appear on public roads. These are not only associated with the need to ensure their safe and efficient operation but also with cost and delivery time constraints. A key challenge lies in the testing and validation (T&V) requirements of CAVs, which are expected to be significantly higher than those of traditional and partially automated vehicles. Promising methodologies that can be used toward this goal are scenario-based (SBT) and X-in-the-Loop (XiL) testing. At the same time, complex techniques such as co-simulation and mixed-reality simulation could also provide significant benefits.
Journal Article

Toward a Machine Learning Development Lifecycle for Product Certification and Approval in Aviation

2022-05-26
Abstract This article presents a new machine learning (ML) development lifecycle which will constitute the core of the new aeronautical standard on ML called AS6983, jointly being developed by working group WG-114/G34 of EUROCAE and SAE. The article also presents a survey of several existing standards and guidelines related to ML in aeronautics, automotive, and industrial domains by comparing and contrasting their scope, purpose, and results.
Journal Article

Toward Unsupervised Test Scenario Extraction for Automated Driving Systems from Urban Naturalistic Road Traffic Data

2023-02-02
Abstract Scenario-based testing is a promising approach to solving the challenge of proving the safe behavior of vehicles equipped with automated driving systems (ADS). Since an infinite number of concrete scenarios can theoretically occur in real-world road traffic, the extraction of scenarios relevant in terms of the safety-related behavior of these systems is a key aspect for their successful verification and validation. Therefore, a method for extracting multimodal urban traffic scenarios from naturalistic road traffic data in an unsupervised manner, minimizing the amount of (potentially biased) prior expert knowledge, is proposed. Rather than an (elaborate) rule-based assignment by extracting concrete scenarios into predefined functional scenarios, the presented method deploys an unsupervised machine learning pipeline. The approach allows for exploring the unknown nature of the data and their interpretation as test scenarios that experts could not have anticipated.
Journal Article

Tire-Road Friction Coefficient Estimation Method Design for Intelligent Tires Equipped with Three-Axis Accelerometer

2021-05-05
Abstract Intelligent tires, as an emerging technology, have great potential for tire-road contact information identification and new vehicle active safety system design. In this article, a tire-road friction coefficient estimation method is proposed based on intelligent tires application with three-axis accelerometer. At first, a finite element tire model with an accelerometer is established using ABAQUS platform. Accelerometer body frame transformation is considered during the tire rotation. Subsequently, the contact patch length is determined according to the peak of the longitudinal acceleration profile. Meanwhile, tire lateral deflection is calculated from the tire lateral acceleration. By curve fitting the lateral deflection model with least square method, tire lateral force and the aligning moment are derived and then the friction coefficient is estimated via brush model.
Journal Article

Three-Dimensional In-Depth Dynamic Analysis of a Ground Vehicle Experiencing a Tire Blowout

2023-08-31
Abstract To investigate the effect of a tire blowout (TBO) on the dynamics of the vehicle comprehensively, a three-dimensional full-vehicle multibody mathematical model is developed and integrated with the nonlinear Dugoff’s tire model. In order to ensure the validity of the developed model, a series of standard maneuvers is carried out and the resulting response is verified using the high-fidelity MSC Adams package. Consequently, the in-plane, as well as out-of-plane dynamics of the vehicle, is extensively examined through a sequence of TBO scenarios with various blown tires and during both rectilinear and curvilinear motion. Moreover, the different possible inputs from the driver, the road bank angle, and the antiroll bar have been accounted for. The results show that the dynamic behavior of the vehicle is tremendously affected both in-plane and out-of-plane and its directional stability is degraded.
Journal Article

Three Case Studies on Small Uncrewed Aerial Systems Near Midair Collisions with Aircraft: An Evidence-Based Approach for Using Objective Uncrewed Aerial Systems Detection Technology

2023-06-14
Abstract Small uncrewed aircraft systems (sUAS) growth continues for recreational and commercial applications. By 2025, the Federal Aviation Administration (FAA) predicts the sUAS fleet to number nearly 2.4 million units. As sUAS operations expand within the National Airspace System (NAS), so too does the probability of near midair collisions (NMACs) between sUAS and aircraft. Currently, the primary means of recognizing sUAS NMACs rely on pilots to visually spot and evade conflicting sUAS. Pilots may report such encounters to the FAA as UAS Sighting Reports. Sighting reports are of limited value as they are highly subjective and dependent on the pilot to accurately estimate range and altitude information. Moreover, they do not account for NMACs that an aircrew member does not spot.
X