Refine Your Search


Search Results

Viewing 1 to 12 of 12
Journal Article

Validation of Crush Energy Calculation Methods for Use in Accident Reconstructions by Finite Element Analysis

Abstract The crush energy is a key parameter to determine the delta-V in accident reconstructions. Since an accurate car crush profile can be obtained from 3D scanners, this research aims at validating the methods currently used in calculating crush energy from a crush profile. For this validation, a finite element (FE) car model was analyzed using various types of impact conditions to investigate the theory of energy-based accident reconstruction. Two methods exist to calculate the crush energy: the work based on the barrier force and the work based on force calculated by the vehicle acceleration times the vehicle mass. We show that the crush energy calculated from the barrier force was substantially larger than the internal energy calculated from the FE model. Whereas the crush energy calculated from the vehicle acceleration was comparable to the internal energy of the FE model.
Journal Article

Theoretical Study of Improving the Safety of the “Operator, Machine, and Environment” System when Performing Transport Operations

Abstract The article considers the issues of a systemic approach to studying safety levels in transport operations and ways to increase the safety of the operator-machine system in Russian transport. The principal and problematic issues of reducing the risk of injury by preventing traffic accidents and reducing the severity of their impact have not been sufficiently addressed. When performing transport operations, there are often disagreements between the elements of the “Operator, Machine, and Environment” technological system due to the influence of external conditions and parameters of the constantly-changing environment in the workplace. This leads to a sharp increase in the number of failures of system elements, which reduces the level of safety of transport operations.
Journal Article

The Placement of Digitized Objects in a Point Cloud as a Photogrammetric Technique

Abstract The frequency of video-capturing collision events from surveillance systems are increasing in reconstruction analyses. The video that has been provided to the investigator may not always include a clear perspective of the relevant area of interest. For example, surveillance video of an incident may have captured a pre- or post-incident perspective that, while failing to capture the precise moment when the pedestrian was struck by a vehicle, still contains valuable information that can be used to assist in reconstructing the incident. When surveillance video is received, a quick and efficient technique to place the subject object or objects into a three-dimensional environment with a known rate of error would add value to the investigation.
Journal Article

Numerical Analysis of Blast Protection Improvement of an Armored Vehicle Cab by Composite Armors and Anti-Shock Seats

Abstract The objective of this article is to evaluate the effects of different blast protective modules to military vehicle structures and occupants. The dynamic responses of the V-shape integral basic armor, the add-on honeycomb sandwich structure module, and the anti-shock seat-dummy system were simulated and analyzed. The improvements of occupant survivability by different protective modules were compared using occupant injury criteria. The integral armored cab can maintain the integrity of the cab body structure. The add-on honeycomb sandwich armor reduces the peak structural deformation and velocity of the cab floor by 34.9% and 47.4%, respectively, compared with the cab with integral armors only. The integral armored cab with the anti-shock seat or the honeycomb sandwich structures reduces the occupant shock responses below the injury criteria. For different blast threat intensities, the selection of appropriate protective modules can meet protection requirements.
Journal Article

Investigation of Fatigue Life of Wheels in Commercial Vehicles

Abstract In India, vehicle population increases every day along with road accidents by 2.5% every year. About 7.7% of accidents are caused by wheel separation, 60% of which are due to nut-related problems. Wheel separations in vehicles occur due to fastener issues and fatigue failures in bolts. A study of the reasons for and mechanisms of nut loosening showed that left-hand side wheels detached and fracture failure occurred in right-hand side studs. Fatigue life of wheels with Nord-Lock washer and without washer is determined by using numerical analysis as per the IS 9438 cornering fatigue test. These numerical results are compared with experimental results.
Journal Article

Improving Vehicle Rollover Resistance Using Fuzzy PID Controller of Active Anti-Roll Bar System

Abstract The active anti-roll bar (AARB) system in vehicles has recently become one of the research hotspots in the field of vehicle technology to improve the vehicle’s active safety. In most off-road vehicles, high ground clearance is required while keeping all wheels in contact with the ground in order to improve traction and maintain load distribution among the wheels. A problem however arises in some types of the off-road vehicles when the vehicle is operated at high speeds on smooth roads. In such condition, the combination of the vehicle’s center of gravity position, large suspension stroke, and soft spring construction creates a stability problem, which could make the vehicle liable to rollover. This article analyzes a comparison of stability performance between passive and active anti-roll bar systems to improve rolling resistance. For active systems, two control strategies will be investigated. The conventional PID controller is firstly investigated and taken as a reference.
Journal Article

HMI for Left Turn Assist (LTA)

Abstract Potential collisions with oncoming traffic while turning left belong to the most safety-critical situations accounting for ~25% of all intersection crossing path crashes. A Left Turn Assist (LTA) was developed to reduce the number of crashes. Crucial for the effectiveness of the system is the design of the human-machine interface (HMI), i.e. defining how the system uses the calculated crash probability in the communication with the driver. A driving simulator study was conducted evaluating a warning strategy for two use cases: firstly, the driver comes to a stop before turning (STOP), and secondly, the driver moves on without stopping (MOVE). Forty drivers drove through three STOP and two MOVE scenarios. For the STOP scenarios, the study compared the effectiveness of an audio-visual warning with an additional brake intervention and a baseline. For the MOVE scenarios, the study analyzed the effectiveness of the audio-visual warning against a baseline.
Journal Article

Detection of Lane-Changing Behavior Using Collaborative Representation Classifier-Based Sensor Fusion

Abstract Sideswipe accidents occur primarily when drivers attempt an improper lane change, drift out of lane, or the vehicle loses lateral traction. In this article, a fusion approach is introduced that utilizes data from two differing modality sensors (a front-view camera and an onboard diagnostics (OBD) sensor) for the purpose of detecting driver’s behavior of lane changing. For lane change detection, both feature-level fusion and decision-level fusion are examined by using a collaborative representation classifier (CRC). Computationally efficient detection features are extracted from distances to the detected lane boundaries and vehicle dynamics signals. In the feature-level fusion, features generated from two differing modality sensors are merged before classification, while in the decision-level fusion, the Dempster-Shafer (D-S) theory is used to combine the classification outcomes from two classifiers, each corresponding to one sensor.
Journal Article

Design and Implementation of a Hybrid Fuzzy-Reinforcement Learning Algorithm for Driver Drowsiness Detection Using a Driving Simulator

Abstract Driver drowsiness is the cause of many fatal accidents all over the world. Many research works have been conducted on detecting driver drowsiness for more than half a century, but statistical data show that such accidents have not decreased significantly. Most researchers have focused on using certain sensors and extracting their relevant features. However, there has been no research work on developing an algorithm to detect driver drowsiness independently from the input type. In this paper, a hybrid fuzzy-reinforcement learning drowsiness detection algorithm is presented. This algorithm is flexible to work with any number and any kind of data related to driver alertness. It estimates the level of alertness based on an arbitrary number of inputs. The algorithm extracts driving patterns specific to each driver and determines driver’s level of drowsiness using a continuous numerical variable rather than a discrete variable.
Journal Article

Analysis of Single-Vehicle Accidents in Japan Involving Elderly Drivers

Abstract The Japanese population is aging rapidly, raising the number of traffic accidents involving elderly drivers. In Japan, single-vehicle accidents are a serious problem because they often result in fatalities. We analyzed these accidents by vehicle type, age group, and driving area. To examine the risk of accidents of the elderly drivers, their driving frequency needs to be considered, which is less. Moreover, it is difficult to know the actual distance driven by them. Therefore, in this paper, based on the assumption that the number of rear-end collisions is a proxy for the traffic volume, we used the number of such collisions as a control for the driving frequency. It was found that in single-vehicle accidents, elderly drivers were at higher risk than other age groups, especially when driving light motor vehicles (K-type vehicles) in non-urban areas.
Journal Article

A Study on Lightweight Design of Automotive Front Rails Using Tailored Blanks by Nonlinear Structural Optimization

Abstract Tailored blanks offer great lightweighting opportunities for automotive industry and were applied on the front rails of a sedan in this research. To achieve the most efficient material usage, all the front rail parts were tailored into multiple sheets with the gauge of each sheet defined as a design variable for optimization. The equivalent static loads (ESL) method was adopted for linear optimization and the Insurance Institute for Highway Safety (IIHS) moderate overlap frontal crash as the nonlinear analysis load case. The torsion and bending stiffness of the sedan body in white (BIW) were set as design constraints. The occupant compartment intrusion in IIHS moderate overlap front crash was set as design objective to be minimized. The optimal thickness configuration for the tailored front rail designs was obtained through ESL optimization for multiple mass saving targets.
Journal Article

A Probabilistic Approach to Hydroplaning Potential and Risk

Abstract A major contributor to fatal vehicle crashes is hydroplaning, which has traditionally been reported at a specific vehicle speed for a given operating condition. However, hydroplaning is a complex phenomenon requiring a holistic, probabilistic, and multidisciplinary approach. The objective of this article is to develop a probabilistic approach to predict Hydroplaning Potential and Risk that integrates fundamental understanding of the interdependent factors: hydrology, fluid-solid interactions, tire mechanics, and vehicle dynamics. A novel theoretical treatment of Hydroplaning Potential and Risk is developed, and simulation results for the prediction of water film thickness and Hydroplaning Potential are presented. The results show the advantages of the current approach which could enable the improvement of road, vehicle, and tire design, resulting in greater safety of the traveling public.