Refine Your Search

Topic

Search Results

Journal Article

Weld Fatigue Damage Assessment of Rail Track Maintenance Equipment: Regulatory Compliance and Practical Insights

2024-03-04
Abstract The use of appropriate loads and regulations is of great importance in weld fatigue assessment of rail on-track maintenance equipment and similar vehicles for optimized design. The regulations and available loads, however, are often generalized for several categories, which proves to be overly conservative for some specific categories of machines. EN (European Norm) and AAR (Association of American Railroads) regulations play a pivotal role in determining the applicable loads and acceptance criteria within this study. The availability of track-induced fatigue load data for the cumulative damage approach in track maintenance machines is often limited. Consequently, the FEA-based validation of rail track maintenance equipment often resorts to the infinite life approach rather than cumulative damage approach for track-induced travel loads, resulting in overly conservative designs.
Journal Article

Ultraviolet-Initiated Curing of Natural Fiber-Reinforced Acrylated Epoxidized Soybean Oil Composites

2021-06-02
Abstract Sustainable practices are taking precedence across many industries, as evident from their shift towards the use of environmentally responsible materials, such as natural fiber-reinforced acrylated epoxidized soybean oil (NF-AESO). However, due to the lower reactivity of AESO, the curing reaction usually requires higher temperatures and longer curing time (e.g., 150°C for 6-12 h), thus making the entire process unsustainable. In this study, we demonstrate the potential power of photons towards manufacturing NF-AESO composites in a sustainable manner at room temperature (RT) within 10 min. Two photoinitiators, i.e., the 2,2-dimethoxy phenylacetophenone (DMPA) and 1-hydroxycyclohexyl phenyl ketone (HCPK), were evaluated and compared with the thermal initiator, i.e., tert-butyl perbenzoate (TBPB). Based on the mechanical performance of the AESOs, the photoinitiation system for NF-AESO was optimized.
Journal Article

The Neutronic Engine: A Platform for Operando Neutron Diffraction in Internal Combustion Engines

2023-11-09
Abstract Neutron diffraction is a powerful tool for noninvasive and nondestructive characterization of materials and can be applied even in large devices such as internal combustion engines thanks to neutrons’ exceptional ability to penetrate many materials. While proof-of-concept experiments have shown the ability to measure spatially and temporally resolved lattice strains in a small aluminum engine on a timescale of minutes over a limited spatial region, extending this capability to timescales on the order of a crank angle degree over the full volume of the combustion chamber requires careful design and optimization of the engine structure to minimize attenuation of the incident and diffracted neutrons to maximize count rates.
Journal Article

The Influence of the Content and Nature of the Dispersive Filler at the Formation of Coatings for Protection of the Equipment of River and Sea Transport

2020-01-23
Abstract To protect ship equipment of river and sea transport, it is suggested to use polymeric protective coatings based on epoxy diane oligomer ED-20, polyethylene polyamine (PEPA) curing agent and filler, which is a departure from industrial production. Thus the purpose of the work is analysis of major dependency of the properties on the content of fillers that allowed to revealed the critical filler content (furnace black) in composites to form a protective coating with the required set of characteristics. The infrared (IR) spectral analysis was used to investigate the presence of bonds on the surface of particles of the PM-75 furnace black, which allows us to assess the degree of cross-linking of the polymer. The influence of the content of dispersed furnace black on the physicomechanical and thermophysical properties and the structure of the protective coating is investigated.
Journal Article

The Effect of Equal-Channel Angular Pressing Processing on Microstructural Evolution, Hardness Homogeneity, and Mechanical Properties of Pure Aluminum

2020-07-25
Abstract Equal-channel angular pressing (ECAP) is among the most applicable severe plastic deformation processes used to fabricate ultrafine-grained materials with superior mechanical properties. In this work, a commercial purity aluminum has been processed via ECAP process up to four passes. The influence of ECAP routes (A and Bc) on the mechanical properties of the material and its grain size was investigated. Microstructural observations of the as-annealed and the rods processed via ECAP were undertaken using optical microscopy. Hardness profiles and contour maps of sections cut perpendicularly and parallel to the load direction were assessed to investigate the effect of ECAP processing on the hardness distribution across the deformed rods. Compressive properties of the rods were also examined. In addition, digital images correlation was used to display the stress distribution along the longitudinal section of the processed sample during the compression test.
Journal Article

The Effect of Current Mode on the Crack and Failure in the Resistance Spot Welding of the Advanced High-Strength DP590 Steel

2020-09-09
Abstract The causes of failure due to cracking in the resistance spot welding of the advanced high-strength steels dual-phase 590 (DP590) were investigated using scanning electron microscopy (SEM), optical microscopy, and the tensile-shear test. The results showed that by increasing the current amount, the formation of the melting zone occurred in the heat-affected zone, leading to the cracking in this area, reducing the tensile strength and decreasing the mechanical properties; the initiation and growth of cracking and failure in this region also happened. In the heat-affected zone, by increasing the current amount with the softening phenomenon, the recrystallized coarse grains also occurred, eventually resulting in the loss of mechanical properties. The results of the tensile-shear test also indicated that by increasing the current up to 12 kA, the strength was raised, but the ductility was reduced.
Journal Article

The Effect of Change in Assembly Sequence on Permanent Strain of Cab Suspension Console

2020-08-20
Abstract Heavy commercial vehicles play an important role in creating the trade and economic balance of countries. Also, the durability and safety of heavy commercial vehicles come to the fore. Heavy commercial vehicles consist of two parts. These are the chassis area with the equipment that allows the vehicle to move and the cabin section where the driver is located. The cabin area is the most important area that ensures the highest level of driver safety. Considering that the production of trucks is increasing day by day, it is inevitable for companies to increase their R&D activities in the field of cabin and cabin suspension systems for much safer, durable, and comfortable trucks. This study aims to determine the safe torque value of the fasteners and their assembly sequence of the Cab Suspension Console, which is one of the most important connection parts in a truck and which can cause a fatal accident by breaking.
Journal Article

The Application of Flame Image Velocimetry to After-injection Effects on Flow Fields in a Small-Bore Diesel Engine

2021-09-14
Abstract This study implements Flame Image Velocimetry (FIV), a diagnostic technique based on post-processing of high-speed soot luminosity images, to show the in-flame flow field development impacted by after-injection in a single-cylinder, small-bore optical diesel engine. Two after-injection cases with different dwell times between the main injection and after-injection, namely, close-coupled and long-dwell, as well as a main-injection-only case are compared regarding flow fields, flow vector magnitude, and turbulence intensity distribution. For each case, high-speed soot luminosity movies from 100 individual combustion cycles are recorded at a high frame rate of 45 kHz for FIV processing. The Reynolds decomposition using a spatial filtering method is applied to the obtained flow vectors so that bulk flow structures and turbulence intensity distributions can be discussed.
Journal Article

TOC

2021-06-07
Abstract TOC
Journal Article

TOC

2023-10-24
Abstract TOC
Journal Article

Surveying Off-Board and Extravehicular Monitoring and Progress Towards Pervasive Diagnostics

2021-10-26
Abstract We survey the state of the art in off-board diagnostics for vehicles, their occupants, and environments, with particular focus on vibroacoustic (VA) approaches. We identify promising application areas including data-driven management for shared mobility and automated fleets, usage-based insurance, and vehicle, occupant, and environmental state and condition monitoring. We close by exploring the particular application of VA monitoring to vehicle diagnostics and prognostics and propose the introduction of automated vehicle- and context-specific model selection as a means of improving algorithm performance, e.g., to enable smartphone-resident diagnostics. Towards this vision, four strong-performing, interdependent classifiers are presented as a proof of concept for identifying vehicle configuration from acoustic signatures. The described approach may serve as the first step in developing “universal diagnostics,” with applicability extending beyond the automotive domain.
Journal Article

Supervised Learning Classification Applications in Fault Detection and Diagnosis: An Overview of Implementations in Unmanned Aerial Systems

2022-08-18
Abstract Statistical machine learning classification methods have been widely used in the fault detection analysis in several engineering domains. This motivates us to provide in this article an overview on the application of these methods in the fault diagnosis strategies and also their successful use in unmanned aerial vehicles (UAVs) systems. Different existing aspects including the implementation conditions, offline design, and online computation algorithms as well as computation complexity and detection time are discussed in detail. Evaluation and validation of these aspects have been ensured by a simple demonstration of the basic classification methods and neural network techniques in solving the fault detection and diagnosis problem of the propulsion system failure of a multirotor UAV. A testing platform of an Hexarotor UAV is completely realized.
Journal Article

Study on Vibration Characteristics of the Towbarless Aircraft Taxiing System

2022-02-21
Abstract The civil aircraft nosewheel is clamped, lifted, and retained through the pick-up and holding system of the towbarless towing vehicle (TLTV), and the aircraft may be moved from the parking position to an adjacent one, the taxiway, a maintenance hangar, a location near the active runway, or conversely only with the power of the TLTV. The TLTV interfacing with the nose-landing gear of civil transport aircraft for the long-distance towing operations at a high speed could be defined as a towbarless aircraft taxiing system (TLATS). The dynamic loads induced by the system vibration may cause damage or reduce the certified safe-life limit of the nose-landing gear or the TLTV when the towing speed increases up to 40 km/h during the towing operations due to the maximum ramp weight of a heavy aircraft.
Journal Article

Study of the Grain Growth Kinetics and Its Influence on Mechanical Behavior of Plain Carbon Steel

2022-08-18
Abstract In the present study, the mechanical performances of plain carbon steel were explored based on the grain growth behavior. In the first step, the samples were normalized at different temperatures ranging from 900°C to 1100°C for 30, 60, 100, 150, and 200 min, respectively. In order to measure the grain size, the planimetric technique of Jeffries was used based on the optical micrographs taken for each sample. The mechanical properties of each grain such as hardness, elongation, yield, and tensile strength were studied, depending on the conventional methods. Experimental results showed that the increase in both heating temperature and holding time enhances grain growth, while the growth rate decreases with increasing time. The initial grain size and proportionality constant were calculated at 950°C, where K = 2.26 μm2/min and D 0 = 25.09 μm. Moreover, a significant increase in strength and hardness was observed with a decrease in grain size.
Journal Article

Study of Temperature Distribution and Parametric Optimization during FSW of AA6082 Using Statistical Approaches

2019-02-01
Abstract In this article, Al-Mg-Si-Mn alloy (AA6082) is butt joined by employing friction stir welding (FSW). The mechanical and metallurgical properties of joints are analyzed by conducting tensile and microhardness testing, respectively. To measure the temperature at different locations, eight thermocouples (L-shaped k-type) are placed at equal distance from the centerline. Least square method attempts to calculate the temperature at the centerline of joints. The process parameters are also optimized using Taguchi’s five-level experimental design. The optimum process parameters are determined, employing ultimate tensile strength (UTS) as a response parameter. A statistical test “analysis of variance” is used to check the adequacy of the model. It has been observed that rotational speed and feed rate are the predominant factors for UTS and microhardness.
Journal Article

State-of-Health Online Estimation for Li-Ion Battery

2020-10-10
Abstract To realize a fast and high-precision online state-of-health (SOH) estimation of lithium-ion (Li-Ion) battery, this article proposes a novel SOH estimation method. This method consists of a new SOH model and parameters identification method based on an improved genetic algorithm (Improved-GA). The new SOH model combines the equivalent circuit model (ECM) and the data-driven model. The advantages lie in keeping the physical meaning of the ECM while improving its dynamic characteristics and accuracy. The improved-GA can effectively avoid falling into a local optimal problem and improve the convergence speed and search accuracy. So the advantages of the SOH estimation method proposed in this article are that it only relies on battery management systems (BMS) monitoring data and removes many assumptions in some other traditional ECM-based SOH estimation methods, so it is closer to the actual needs for electric vehicles (EVs).
Journal Article

Soot Oxidation Studies in an Optical Diesel Engine Using Laser-Induced Incandescence and Extinction: The Effects of Injector Aging and Fuel Additive

2021-05-11
Abstract Previous studies have shown that injector aging adversely affects the diesel engine spray formation and combustion. It has also been shown that the oxygenated fuel additive tripropylene glycol monomethyl ether (TPGME) can lower soot emissions. In this study, the effects of injector aging and TPGME on the late-cycle oxidation of soot were investigated using laser diagnostic techniques in a light-duty optical diesel engine at two load conditions. The engine was equipped with a quartz piston with the same complex piston geometry as a production engine. Planar laser-induced incandescence (LII) was used to obtain semiquantitative in-cylinder two-dimensional (2D) soot volume fraction (fv ) distributions using extinction measurements. The soot oxidation rate was estimated from the decay rate of the in-cylinder soot concentration for differently aged injectors and for cases with and without TPGME in the fuel.
Journal Article

Similarity between Damaging Events Using Pseudo Damage Density

2020-11-10
Abstract Load-time histories can be used to predict vehicle durability by calculating the pseudo damage (PD) through one or more load paths for a vehicle. When the dynamics of each load path are taken into account, a PD density (damage per distance traveled) can be expressed for each load path for any given road input to a vehicle. When damage is expressed as a PD density for a segment of road, separable damaging events can be identified using the PD density in all load paths of interest for a vehicle. However, it would be beneficial if events with similar damage characteristics can be identified and grouped together to provide an additional level of durability information. The objective of this work is to develop a similarity test for identifying the similarity/dissimilarity between multiple damaging events using the damage characteristics in multiple load paths. The damage characteristics for events are defined using the distribution of PD density samples for all known load paths.
Journal Article

Sheet Metal Fatigue near Nuts Welded to Sheet Structures and Bolted to a Rigid Attachment

2022-05-10
Abstract Stress-based sheet metal fatigue near nuts welded to thin sheets is one of the necessary design processes for car bodies. In this investigation, the influence of the attachment contact on the localized fatigue mechanism is examined through finite element (FE) models and controlled fatigue experiments. First, a fatigue experimental setup, which includes a thin-sheet closed-hat section with a weld nut bolted to a thick attachment piece, is designed to minimize the uncertainty of the influence of the fixtures on the experimental results. The experiments are carried out on 0.9- and 1.0-mm thick hat sections with a square weld nut under force control conditions with complete reversed loading. Due to the contact, the test specimen performs as a bilinear spring that has a lower stiffness in the upstroke direction when compared to the downstroke direction where full contact of the attachment occurs with the hat section.
Journal Article

Review of Gas Generation Behavior during Thermal Runaway of Lithium-Ion Batteries

2023-12-04
Abstract Due to the limitations of current battery manufacturing processes, integration technology, and operating conditions, the large-scale application of lithium-ion batteries in the fields of energy storage and electric vehicles has led to an increasing number of fire accidents. When a lithium-ion battery undergoes thermal runaway, it undergoes complex and violent reactions, which can lead to combustion and explosion, accompanied by the production of a large amount of flammable and toxic gases. These flammable gases continue to undergo chemical reactions at high temperatures, producing complex secondary combustion products. This article systematically summarizes the gas generation characteristics of different types and states of batteries under different thermal runaway triggering conditions. And based on this, proposes the key research directions for the gas generation characteristics of lithium-ion batteries.
X