Refine Your Search


Search Results

Viewing 1 to 19 of 19
Journal Article

Vibration Response Properties in Frame Hanging Catalyst Muffler

Abstract Dynamic stresses exist in parts of a catalyst muffler caused by the vibration of a moving vehicle, and it is important to clarify and predict the vibration response properties for preventing fatigue failures. Assuming a vibration isolating installation in the vehicle frame, the vibration transmissibility and local dynamic stress of the catalyst muffler were examined through a vibration machine. Based on the measured data and by systematically taking vibration theories into consideration, a new prediction method of the vibration modes and parameters was proposed that takes account of vibration isolating and damping. A lumped vibration model with the six-element and one mass point was set up, and the vibration response parameters were analyzed accurately from equations of motion. In the vibration test, resonance peaks from the hanging bracket, rubber bush, and muffler parts were confirmed in three excitation drives, and local stress peaks were coordinate with them as well.
Journal Article

Uncertainty Analysis of High-Frequency Noise in Battery Electric Vehicle Based on Interval Model

Abstract The high-frequency noise issue is one of the most significant noise, vibration, and harshness problems, particularly in battery electric vehicles (BEVs). The sound package treatment is one of the most important approaches toward solving this problem. Owing to the limitations imposed by manufacturing error, assembly error, and the operating conditions, there is often a big difference between the actual values and the design values of the sound package components. Therefore, the sound package parameters include greater uncertainties. In this article, an uncertainty analysis method for BEV interior noise was developed based on an interval model to investigate the effect of sound package uncertainty on the interior noise of a BEV. An interval perturbation method was formulated to compute the uncertainty of the BEV’s interior noise.
Journal Article

Study of the Sliding Door Shaking Problem and Optimization Based on the Application of Euler’s Spiral

Abstract This study focuses on the sudden shaking phenomenon of a sliding door passing through a corner. This phenomenon requires attention because shaking during movement can lead to a harsh operation feeling and a short service life. An experiment based on a test setup was conducted, and the sudden change in the acceleration of a sliding door panel was measured. Based on multi-body dynamics (MBD) analysis and a rigid-flexible coupled model of the sliding door system, the cause of the sudden shaking was determined to be the discontinuous curvature of the middle rail trajectory. A transition curve was proposed as the solution for the discontinuous curvature, and Euler’s spiral was applied in the redesign of the middle rail trajectory. Verified by simulations, the results exhibit considerable improvement in sliding door movement stability, with large reductions in the maximum center of mass (CM) acceleration and guide roller impact force.
Journal Article

Structural Optimization Techniques to Design Light Weight and Low Radiated Noise Components

Abstract Structural optimization evolved as a preferred technique across industries to develop lightweight products. One of the widely studied topics in structural optimization is to develop methods that reduce the radiated noise from a structure, where responses like Equivalent Radiated Power (ERP) and natural frequencies used to indirectly address the noise levels. This article compares freeform optimization with topology optimization technique and investigates their effectiveness for reducing radiated noise and weight. To illustrate the same, Finite Element Method (FEM) and Boundary Element Method (BEM) analysis are performed on a sheet metal flat plate (panel) as an example and correlated the same with experimental data. Further, different optimization problem formulations have been explored on those examples and results have been compared.
Journal Article

Resolution of HEV Battery Cooling System Inlet Noise Issue by Optimizing Duct Design and Fan Speed Control Strategy

Abstract The power battery cooling system of a hybrid electric vehicle is composed of a fan and duct assembly with its inlet positioned inside the vehicle cabin. For the prototype vehicle considered in this work, the air inlet is positioned on the package tray due to limited feasible choices. When the battery temperature is over rated limit, the cooling fan starts to operate to cool the battery system. Propelled by the fan in the cooling system, the air in the passenger compartment enters the duct inlet, and rushes through the air duct to reach the battery pack to fulfill the intended cooling function. In this case, the rear seat occupants could clearly perceive the existence of an annoying whirring noise. In this paper, the characteristics of the battery air cooling system and its working principles are briefly described. The air inlet noise generation mechanism and its frequency characteristics are then analyzed.
Journal Article

Multi-Objective Optimization of Counterweights: A Substitute for the Balance Shaft or Mass Unbalancing in Three-Cylinder Engines

Abstract Three-cylinder engines were launched, given the increasing demand for improved fuel economy and efficiency along with reduced friction and weight. Unlike four-cylinder engines, these engines are not naturally balanced. So, in order to compete with four-cylinder engines, some methods to solve this inherent weakness, such as balance shaft, mass unbalancing of flywheel and crankshaft pulley, or counterweights configuration (angular orientation and correction amount), have been used. Considering the undesirable characteristics of the balance shaft, such as cost, weight, friction, and noise, as well as dynamically inappropriate mass unbalancing method, this research proposes multi-objective optimization of counterweights to reduce vibrations.
Journal Article

Innovative Approach of Wedge Washer to Avoid Bolt Loosening in Automotive Applications

Abstract Automotive vehicle includes various systems like engine, transmission, exhaust, air intake, cooling and many more systems. No doubt the performance of individual system depends upon their core design. But for performance, the system needs to be fastened properly. In automotive, most of the joints used fasteners which helps in serviceability of the components. There are more than thousands of fasteners used in the vehicle. At various locations, we found issue of bolt loosening and because of this design intent performance has not met by the system. During product development of ECS (Engine cooling system), various issues reported to loosening the bolt. The pre-mature failure of bolt loosening, increases the interest in young engineers for understanding the behavior of fastener in vehicle running conditions. This paper focuses on the design of wedge shape of washer to avoid bolt loosening.
Journal Article

Influence of Rib Stiffener Design Parameters on the Noise Radiation of an Engine Block

Abstract Stiffener ribs are widely used to increase the stiffness of engine blocks, shifting the vibration modes to higher frequencies where excitation is weaker so that radiated noise can be reduced. The effect of different rib design parameters on the radiated noise emission of a diesel engine has been investigated considering its impact on block weight. A heavy-duty engine block was modeled using finite element method, multi-body dynamics approach was used to determine the excitation forces acting due to combustion pressure and inertias, and boundary element method was used to find the acoustic transfer vectors which give the relationship between engine surface velocities and sound pressure levels at predetermined microphone locations. Initially, the baseline analytical sound pressure level and surface velocity results for the engine without ribs were obtained. Two prototype engines, with and without stiffened ribs, were tested in an acoustic dynamometer in complete speed range.
Journal Article

Force Transmission Characteristics for a Loaded Structural-Acoustic Tire Model

Abstract Concerns about tire noise radiation arise partly from city traffic planning, environmental protection, and pedestrian safety standpoints, while from the vehicle passengers’ perspective, noise transmitted to the vehicle interior is more important. It is the latter concern that is addressed in this article. Sound-absorbing materials generally offer good absorption at higher frequencies, but the reduction of relatively low frequency, structure-borne tire noise is a continuing focus of many auto manufacturers. A tire’s internal, acoustic cavity resonance is a very strong contributing factor to tire-related structure-borne noise, and it can easily be perceived by passengers. Some reduction of vehicle cabin noise can be achieved through the insertion of sound-absorbing material in the tires. However, apart from the additional cost for such tires, there is also an increased complexity when repairing them because of the need to avoid damaging the sound-absorptive lining.
Journal Article

Feature-Based Response Classification in Nonlinear Structural Design Simulations

Abstract An applied system design analysis approach for automated processing and classification of simulated structural responses is presented. Deterministic and nonlinear dynamics are studied under ideal loading and low noise conditions to determine fundamental system properties, how they vary and possibly interact. Using powerful computer resources, large amounts of simulated raw data can be produced in a short period of time. Efficient tools for data processing and interpretation are then needed, but existing ones often require much manual preparation and direct human judgement. Thus, there is a need to develop techniques that help to treat more virtual prototype variants and efficiently extract useful information from them. For this, time signals are evaluated by methods commonly used within structural dynamics and statistical learning. A multi-level multi-frequency stimulus function is constructed and simulated response signals are combined into frequency domain functions.
Journal Article

Fault Diagnosis Approach for Roller Bearings Based on Optimal Morlet Wavelet De-Noising and Auto-Correlation Enhancement

Abstract This article presents a fault diagnosis approach for roller bearing by applying the autocorrelation approach to filtered vibration measured signal. An optimal Morlet wavelet filter is applied to eliminate the frequency associated with interferential vibrations; the raw measured signal is filtered with a band-pass filter based on a Morlet wavelet function whose parameters are optimized based on maximum Kurtosis. Autocorrelation enhancement is applied to the filtered signal to further reduce the residual in-band noise and highlight the periodic impulsive feature. The proposed technique is used to analyze the experimental measured signal of investigated vehicle gearbox. An artificial fault is introduced in vehicle gearbox bearing an orthogonal placed groove on the inner race with the initial width of 0.6 mm approximately. The faulted bearing is a roller bearing located on the gearbox input shaft - on the clutch side.
Journal Article

Explanation for Variability in Lower Frequency Structure-Borne Noise and Vibration: Roles of Rear Subframe Dynamics and Right-Left Spindle Phasing

Abstract This investigation focuses on a class of rear suspension systems that contain both direct and intersecting structural paths from the tire contact patches to the vehicle body. The structural paths intersect through a dynamically active rear subframe structure. New experiments and computational models are developed and analyzed in this article to investigate the variability of structure-borne noise and vibration due to tire/road interactions in the lower- to mid-frequency regimes. Controlled operational experiments are conducted with a mass-production minivan on a chassis dynamometer equipped with rough road shells. Unlike prior literature, the controlled experiments are analyzed for run-run variations in the structure-borne noise up to 300 Hz in a single vehicle to evaluate the nature of excitations at the spindle as the key source of variation in the absence of significant manufacturing, assembly and instrumentation errors.
Journal Article

Direct Versus Indirect Acting Piezoelectric CR Injectors: Comparison of Hydraulic Performance, Pollutant Emissions, Combustion Noise, and Fuel Consumption

Abstract A comprehensive comparison between a direct acting and an indirect acting piezoelectric injector has been carried out both at the hydraulic rig and at the dynamometer cell. The working principle of these injector typologies is illustrated, and their hydraulic performance has been analyzed and discussed on the basis of experimental data collected at a hydraulic test rig. The injector characteristics, nozzle opening and closure delays, injector leakages, injected flow-rate profiles, injector-to-injector variability in the injected mass, injected volume fluctuations with the dwell time (DT), and minimum DT for fusion-free multiple injections have been compared in order to evaluate the impact of the injector driving system on the injection apparatus performance. The direct acting and indirect acting piezoelectric injectors have been installed on a Euro 5 diesel engine, which has been tested at a dynamometer cell.
Journal Article

Detection Method for Cavity Defects in Ballastless Track Structures of High-Speed Railways Based on Air-Coupled Ultrasonic Lamb Waves

Abstract This study proposes a method for the rapid detection and location of cavity defects in ballastless track structures of high-speed railways in service. First, the propagation law of air-coupled ultrasonic Lamb waves in the ballastless track structure is studied. Theoretical calculation results show that the ultrasonic Lamb wave group velocity of the A2 mode in the track plate is 4000 m/s. Then, the excitation and reception methods of the air-coupled ultrasound are studied. Theoretical and experimental results show that the A2 mode Lamb wave can be generated by the 3.8° oblique incidence of the ballastless track structure. Finally, an experimental system for air-coupled ultrasonic testing is constructed. A pair of air-coupled ultrasonic probes is used to provide excitation and reception Lamb wave signals at an inclined angle of 3.8°, 20 mm away from the surface of the track plate, and 40 mm/step along the scanning direction.
Journal Article

Correlation Model of Subjective and Objective Evaluation Based on Grey GM(0,N) for Automobile Sound Quality

Abstract Correlation analysis of subjective and objective evaluation for automobile sound quality is an important topic in automobile technology fields. In view of the deficiency of multi-dimensional linear regression analysis and the theoretical merits of grey system method, grey comprehensive relational degree was calculated to analyze the contribution of objective evaluation data to subjective evaluation. The main objective variables affecting the subjective feeling were determined. The variables include loudness, sharpness and shaking degrees. Grey GM(0,4) model was established as a quantitative expression for describing the subjective and objective evaluation correlation. The results of residual test and posterior-variance-test show that the established model was accurate and the model can be used to analyze and predict subjective and objective evaluation data of automobile sound quality.
Journal Article

Automotive Components Fatigue and Durability Testing with Flexible Vibration Testing Table

Abstract Accelerated durability testing of automotive components has become a major interest for the ground vehicle Industries. This approach can predict the life characteristics of the vehicle by testing fatigue failure at higher stress level within a shorter period of time. Current tradition of laboratory testing includes a rigid fixture to mount the component with the shaker table. This approach is not accurate for the durability testing of most vehicle components especially for those parts connected directly with the tire and suspension system. In this work, the effects of the elastic support on modal parameters of the tested structure, such as natural frequencies, damping ratios and mode shapes, as well as the estimated structural fatigue life in the durability testing were studied through experimental testing and numerical simulations.
Journal Article

Application of Multi-Attribute Weighted Gray Target Decision in Automobile Noise Reduction Scheme Evaluation

Abstract In the selection of automobile noise reduction schemes, the lack of comprehensive quantitative index system and objective evaluation method is a serious problem. In this article, the methods of analytic hierarchy process (AHP) and gray target decision were used to solve the problem. Firstly, AHP and gray target decision method were introduced respectively in detail. Secondly, three automobile noise reduction schemes were illustrated. Four types of data were selected as the decision indexes, and the weight coefficients of all the decision indexes were calculated using the AHP. Then multi-attribute mixed weighted gray target decision model was established. The optimum scheme was obtained by the calculation of the off-target distance and the sorting of the calculation results. The proposed method can quantify the evaluation process and overcome the disadvantages of the traditional analogy method. The example shows that the method is feasible.
Journal Article

Active Suspension: Future Lessons from The Past

Abstract Active suspension was a topic of great research interest near the end of last century. Ultimately broad bandwidth active systems were found to be too expensive in terms of both energy and financial cost. This past work, developing the ultimate vehicle suspension, has relevance for today’s vehicle designers working on more efficient and effective suspension systems for practical vehicles. From a control theorist’s perspective, it provides an interesting case study in the use of “practical” knowledge to allow “better” performance than predicted by theoretically optimal linear controllers. A brief history of active suspension will be introduced. Peter Wright, David Williams, and others at Lotus developed their Lotus modal control concept. In a parallel effort, Dean Karnopp presented the notion of inertial (Skyhook) damping. These concepts will be compared, the combination of these two distinctly different efforts will be discussed, and eventual vehicle results presented.
Journal Article

A Review on Physical Mechanisms of Tire-Pavement Interaction Noise

Abstract Tire-pavement interaction noise (TPIN) dominates for passenger cars above 40 km/h and trucks above 70 km/h. Numerous studies have attempted to uncover and distinguish the basic mechanisms of TPIN. However, intense debate is still ongoing about the validity of these mechanisms. In this work, the physical mechanisms proposed in the literature were reviewed and divided into three categories: generation mechanisms, amplification mechanisms, and attenuation mechanisms. The purpose of this article is to gather the published general opinions for further open discussions.