Refine Your Search

Topic

Search Results

Journal Article

Weld Fatigue Damage Assessment of Rail Track Maintenance Equipment: Regulatory Compliance and Practical Insights

2024-03-04
Abstract The use of appropriate loads and regulations is of great importance in weld fatigue assessment of rail on-track maintenance equipment and similar vehicles for optimized design. The regulations and available loads, however, are often generalized for several categories, which proves to be overly conservative for some specific categories of machines. EN (European Norm) and AAR (Association of American Railroads) regulations play a pivotal role in determining the applicable loads and acceptance criteria within this study. The availability of track-induced fatigue load data for the cumulative damage approach in track maintenance machines is often limited. Consequently, the FEA-based validation of rail track maintenance equipment often resorts to the infinite life approach rather than cumulative damage approach for track-induced travel loads, resulting in overly conservative designs.
Journal Article

Water Droplet Collison and Erosion on High-Speed Spinning Wheels

2024-04-04
Abstract The water droplet erosion (WDE) on high-speed rotating wheels appears in several engineering fields such as wind turbines, stationary steam turbines, fuel cell turbines, and turbochargers. The main reasons for this phenomenon are the high relative velocity difference between the colliding particles and the rotor, as well as the presence of inadequate material structure and surface parameters. One of the latest challenges in this area is the compressor wheels used in turbochargers, which has a speed up to 300,000 rpm and have typically been made of aluminum alloy for decades, to achieve the lowest possible rotor inertia. However, while in the past this component was only encountered with filtered air, nowadays, due to developments in compliance with tightening emission standards, various fluids also collide with the spinning blades, which can cause mechanical damage.
Journal Article

Water Body Survey, Inspection, and Monitoring Using Amphibious Hybrid Unmanned Aerial Vehicle

2021-02-04
Abstract Water quality monitoring is needed for the effective management of water resources. Periodic sampling and regular inspection/analysis allow one to classify water and identify changes or trends in water quality over time. This article presents a novel concept of an Amphibious Hybrid Unmanned Aerial Vehicle (AHUAV) that can operate in air and water for rapid water sampling, real-time water quality analysis, and water body management. A methodology using the developed AHUAV system for water body management has also been proposed for an easier and effective way of monitoring water bodies using advanced drone technologies. Using drones for water body management can be a cost-effective and efficient way of carrying out regular inspections and continual monitoring.
Journal Article

Vibration Response Properties in Frame Hanging Catalyst Muffler

2018-07-24
Abstract Dynamic stresses exist in parts of a catalyst muffler caused by the vibration of a moving vehicle, and it is important to clarify and predict the vibration response properties for preventing fatigue failures. Assuming a vibration isolating installation in the vehicle frame, the vibration transmissibility and local dynamic stress of the catalyst muffler were examined through a vibration machine. Based on the measured data and by systematically taking vibration theories into consideration, a new prediction method of the vibration modes and parameters was proposed that takes account of vibration isolating and damping. A lumped vibration model with the six-element and one mass point was set up, and the vibration response parameters were analyzed accurately from equations of motion. In the vibration test, resonance peaks from the hanging bracket, rubber bush, and muffler parts were confirmed in three excitation drives, and local stress peaks were coordinate with them as well.
Journal Article

Using Adsorbents to Mitigate Biodiesel Influence on the Deterioration of Engine Oil

2020-08-11
Abstract This study focused on using adsorbents to suppress engine oil deterioration as a result of the influence of biodiesel. Engine oil performance is affected by the use of biodiesel that results in short period of oil drain interval. Neat base oil, 80% blended with biodiesel, was 20% thermo oxidatively aged. Magnesium aluminum hydroxycarbonate and 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-buty-4-hydroxybenzyl)benzene were applied, and the formation of oligomers in the base oil-RME mixture was monitored. The adsorbents intercept the precursors of the aging procedure and, therefore, interfere with the aging process. The analysis with FTIR showed less to no formation of oligomers. About 90% reduction in the total acid number was observed, with about 90% reduction in viscosity increment. The adsorbents, therefore, have an enhanced influence on the oxidative stability of biodiesel and its blends.
Journal Article

Understanding the Impact of Standardized SAE Waveform Parameter Variation on Artificial Lightning Plasma, Specimen Loading, and Composite Material Damage

2020-02-18
Abstract Previous works have established strategies to model artificial test lightning plasma with specific waveform parameters and use the predicted plasma behavior to estimate test specimen damage. To date no computational works have quantified the influence of varying the waveform parameters on the predicted plasma behavior and resulting specimen damage. Herein test standard Waveform B has been modelled and the waveform parameters of “waveform peak,” “rise time,” and “time to reach the post-peak value” have been varied. The plasma and specimen behaviors have been modelled using the Finite Element (FE) method (a Magnetohydrodynamic FE multiphysics model for the plasma, a FE thermal-electric model for the specimen). For the test arrangements modelled herein, it has been found that “peak current” is the key parameter influencing plasma properties and specimen damage.
Journal Article

Understanding Conductive Layer Deposits: Test Method Development for Lubricant Performance Testing for Hybrid and Electric Vehicle Applications

2022-11-07
Abstract Advances in hybrid vehicles and electric vehicles (EV) are creating a need for a new generation of lubricants and new lubricant performance tests. Copper corrosion is one prominent concern for hybrid vehicles and EVs and is routinely assessed using a coupon test. This is characterized as metal dissolution, a surface tarnish, or a corrosion layer where a corrosion product remains on the surface and is characterized by a qualitative visual rating. This deficiency does not provide insight into the nature of the corrosion deposit. In an electric drive unit, there are multiple sources of the electric potential present, which can significantly alter the formation of a corrosion deposit which is not assessed in the coupon tests. The formation of a conductive corrosion deposit can result in catastrophic failure of the electric drive unit, either through direct shorting of the motor winding or failure of the power electronics.
Journal Article

Ultraviolet-Initiated Curing of Natural Fiber-Reinforced Acrylated Epoxidized Soybean Oil Composites

2021-06-02
Abstract Sustainable practices are taking precedence across many industries, as evident from their shift towards the use of environmentally responsible materials, such as natural fiber-reinforced acrylated epoxidized soybean oil (NF-AESO). However, due to the lower reactivity of AESO, the curing reaction usually requires higher temperatures and longer curing time (e.g., 150°C for 6-12 h), thus making the entire process unsustainable. In this study, we demonstrate the potential power of photons towards manufacturing NF-AESO composites in a sustainable manner at room temperature (RT) within 10 min. Two photoinitiators, i.e., the 2,2-dimethoxy phenylacetophenone (DMPA) and 1-hydroxycyclohexyl phenyl ketone (HCPK), were evaluated and compared with the thermal initiator, i.e., tert-butyl perbenzoate (TBPB). Based on the mechanical performance of the AESOs, the photoinitiation system for NF-AESO was optimized.
Journal Article

Toward Material Efficient Vehicles: Ecodesign Recommendations Based on Metal Sustainability Assessments

2018-09-17
Abstract Current End-of-Life Vehicle (ELV) recycling processes are mainly based on mechanical separation techniques. These methods are designed to recycle those metals with the highest contribution in the vehicle weight such as steel, aluminum, and copper. However, a conventional vehicle uses around 50 different types of metals, some of them considered critical by the European Commission. The lack of specific recycling processes makes that these metals become downcycled in steel or aluminum or, in the worst case, end in landfills. With the aim to define several ecodesign recommendations from a raw material point of view, it is proposed to apply a thermodynamic methodology based on exergy analysis. This methodology uses an indicator called thermodynamic rarity to assess metal sustainability. It takes into account the quality of mineral commodities used in a vehicle as a function of their relative abundance in Nature and the energy intensity required to extract and process them.
Journal Article

Thermomechanical Fracture Failure Analysis of a Heavy-Duty Diesel Engine Cylinder Liner through Performance Analysis and Finite Element Modeling

2020-10-02
Abstract Diesel engines include systems for cooling, lubrication, and fuel injection and contain a variety of components. A malfunction in any of the engine systems or the presence of any faulty element influences engine performance and deteriorates its components. This research is concerned with the untimely appearance of vital cracks in the liners of a turbocharged heavy-duty Diesel engine. To find the root causes for premature failure, rigorous examinations through visual observations, material characterization, and metallographic investigations are performed. These include Scanning Electron Microscope (SEM) and Energy-Dispersive Spectroscopy (EDS), fracture mechanics analysis, and performance examination, which are also followed by Finite Element Moldings. To find the proper remedy to resolve the problem, drawing a precise and reliable picture of the engine’s operating conditions is required.
Journal Article

Thermohydrodynamic Modeling of Squeeze Film Dampers in High-Speed Turbomachinery

2018-04-07
Abstract This work develops a comprehensive thermohydrodynamic (THD) model for high-speed squeeze film dampers (SFDs) in the presence of lubricant inertia effects. Firstly, the generalized expression for Reynolds equation is developed. Additionally, in order to reduce the complexity of the hydrodynamic equations, an average radial viscosity is defined and integrated into the equations. Subsequently, an inertial correction to the pressure is incorporated by using a first-order perturbation technique to represent the effect of lubricant inertia on the hydrodynamic pressure distribution. Furthermore, a thermal model, including the energy equation, the Laplace heat conduction equations in the surrounding solids (i.e. the journal and the bush), and the thermal boundary conditions at the interfaces is constructed. Moreover, the system of partial differential hydrodynamic and thermal equations is simultaneously solved by using an iterative numerical algorithm.
Journal Article

Thermo-Mechanical Coupled Analysis-Based Design of Ventilated Brake Disc Using Genetic Algorithm and Particle Swarm Optimization

2021-08-24
Abstract The brake discs are subjected to thermal load due to sliding by the brake pad and fluctuating loads because of the braking load. This combined loading problem requires simulation using coupled thermo-mechanical analysis for design evaluation. This work presents a combined thermal and mechanical finite element analysis (FEA) and evolutionary optimization-based novel approach for estimating the optimal design parameters of the ventilated brake disc. Five parameters controlling the design: inboard plate thickness, outboard plate thickness, vane height, effective offset, and center hole radius were considered, and simulation runs were planned. A total of 27 brake disc designs with design parameters as recommended by the Taguchi method (L27) were modeled using SolidWorks, and the FEA simulation runs were carried out using the ANSYS thermal and structural analysis tool.
Journal Article

Thermal Management Optimization of Prismatic Lithium-Ion Battery Using Phase Change Material

2022-04-21
Abstract High technology expertise and strong advancement in electric vehicles and Lithium (Li)-ion battery devices and systems have increased the speed of development and application of new equipment. It is reported that Li-ion battery life reduces almost by 60 days per degree temperature rise in an operational temperature of 30°C to 40°C, which makes cooling a high priority. The current study focuses on cooling the battery system using Phase Change Material (PCM) placed as bands of different dimensions around the prismatic battery. Eight novel designs of varying dimensions were constructed for three-volume scenarios. The heat generations considered in this study are 6,855 W/m3, 12,978 W/m3, 19,100 W/m3, and 63,970 W/m3. The data obtained was trained using an artificial neural network (ANN), and an equation was attained to fit the data. The optimum placement of PCM with respect to the number of bands and dimensions was achieved through a Genetic Algorithm.
Journal Article

Thermal Energy Performance Evaluation and Architecture Selection for Off-Highway Equipment

2021-08-31
Abstract An accurate and rapid thermal model of an axle-brake system is crucial to the design process of reliable braking systems. Proper thermal management is necessary to avoid damaging effects, such as brake fade, thermal cracking, and lubricating oil degradation. In order to understand the thermal effects inside of a lubricated braking system, it is common to use Computational Fluid Dynamics (CFD) to calculate the heat generation and rejection. However, this is a difficult and time-consuming process, especially when trying to optimize a braking system. This article uses the results from several CFD runs to train a Stacked Ensemble Model (SEM), which allows the use of machine learning (ML) to predict the systems’ temperature based on several input design parameters. The robustness of the SEM was evaluated using uncertainty quantification.
Journal Article

Thermal Energy Performance Evaluation and Architecture Selection for Off-Highway Equipment

2021-08-31
Abstract Off-highway equipment are subjected to diverse environmental conditions, severe duty cycles, and multiple simultaneous operations. Due to its continuous, high-power adverse operating conditions, equipment are exposed to high thermal loads, which result in the deterioration of its performance and efficiency. This article describes a model-based system simulation approach for thermal performance evaluation of a self-propelled off-highway vehicle. The objective of developing the simulation model including thermal fidelity is to quantify the impact of thermal loads on vehicular system/subsystems performance. This article also describes the use of simulation models for driving architectural design decisions and virtual test replication in all stages of product development.
Journal Article

Theoretical Development of Localized Pseudo Damage

2020-02-18
Abstract Damage is accumulated by vehicles as they travel. Current damage methods allow for the total accumulated damage to be identified; however, they do not allow for identification of the road segments that induce the largest component of the damage. The objective of this article is to develop a measure, Localized Pseudo Damage (LPD), which defines the amount of damage each individual road excitation contributes to the total accumulated pseudo damage. A novel theoretical development of LPD along with analytical and discrete simulation analyses is presented. The results show that the LPD is causal and correctly identifies the location and magnitude of damaging events. This is further demonstrated with the application of the method on a real road surface.
Journal Article

The Placement of Digitized Objects in a Point Cloud as a Photogrammetric Technique

2018-08-08
Abstract The frequency of video-capturing collision events from surveillance systems are increasing in reconstruction analyses. The video that has been provided to the investigator may not always include a clear perspective of the relevant area of interest. For example, surveillance video of an incident may have captured a pre- or post-incident perspective that, while failing to capture the precise moment when the pedestrian was struck by a vehicle, still contains valuable information that can be used to assist in reconstructing the incident. When surveillance video is received, a quick and efficient technique to place the subject object or objects into a three-dimensional environment with a known rate of error would add value to the investigation.
Journal Article

The Neutronic Engine: A Platform for Operando Neutron Diffraction in Internal Combustion Engines

2023-11-09
Abstract Neutron diffraction is a powerful tool for noninvasive and nondestructive characterization of materials and can be applied even in large devices such as internal combustion engines thanks to neutrons’ exceptional ability to penetrate many materials. While proof-of-concept experiments have shown the ability to measure spatially and temporally resolved lattice strains in a small aluminum engine on a timescale of minutes over a limited spatial region, extending this capability to timescales on the order of a crank angle degree over the full volume of the combustion chamber requires careful design and optimization of the engine structure to minimize attenuation of the incident and diffracted neutrons to maximize count rates.
Journal Article

The Influence of the Content and Nature of the Dispersive Filler at the Formation of Coatings for Protection of the Equipment of River and Sea Transport

2020-01-23
Abstract To protect ship equipment of river and sea transport, it is suggested to use polymeric protective coatings based on epoxy diane oligomer ED-20, polyethylene polyamine (PEPA) curing agent and filler, which is a departure from industrial production. Thus the purpose of the work is analysis of major dependency of the properties on the content of fillers that allowed to revealed the critical filler content (furnace black) in composites to form a protective coating with the required set of characteristics. The infrared (IR) spectral analysis was used to investigate the presence of bonds on the surface of particles of the PM-75 furnace black, which allows us to assess the degree of cross-linking of the polymer. The influence of the content of dispersed furnace black on the physicomechanical and thermophysical properties and the structure of the protective coating is investigated.
Journal Article

The Influence of Carbon Fiber Composite Specimen Design Parameters on Artificial Lightning Strike Current Dissipation and Material Thermal Damage

2023-04-29
Abstract Previous artificial lightning strike direct effect research has examined a broad range of specimen design parameters. No works have studied how such specimen design parameters and electrical boundary conditions impact the dissipation of electric current flow through individual plies. This article assesses the influence of carbon fiber composite specimen design parameters (design parameters = specimen size, shape, and stacking sequence) and electrical boundary conditions on the dissipation of current and the spread of damage resulting from Joule heating. Thermal-electric finite element (FE) modelling is used and laboratory scale (<1 m long) and aircraft scale (>1 m long) models are generated in which laminated ply current dissipation is predicted, considering a fixed artificial lightning current waveform. The simulation results establish a positive correlation between the current exiting the specimen from a given ply and the amount of thermal damage in that ply.
X