Refine Your Search

Topic

Search Results

Journal Article

Theory of Collision Avoidance Capability in Automated Driving Technologies

2018-10-29
Abstract To evaluate that automated vehicle is as safe as a human driver, a following question is studied: how does an automated vehicle react under extreme conditions close to collision? In order to understand the collision avoidance capability of an automated vehicle, we should analyze not only such post-extreme condition behavior but also pre-extreme condition behavior. We present a theory to analyze the collision avoidance capability of automated driving technologies. We also formulate a collision avoidance equation on the theory. The equation has two types of solutions: response driving plans and preparation driving plans. The response driving plans are supported by response strategy on which the vehicle reacts after detection of a hazard and they are highly efficient in terms of travel time.
Journal Article

Study of Temperature Distribution and Parametric Optimization during FSW of AA6082 Using Statistical Approaches

2019-02-01
Abstract In this article, Al-Mg-Si-Mn alloy (AA6082) is butt joined by employing friction stir welding (FSW). The mechanical and metallurgical properties of joints are analyzed by conducting tensile and microhardness testing, respectively. To measure the temperature at different locations, eight thermocouples (L-shaped k-type) are placed at equal distance from the centerline. Least square method attempts to calculate the temperature at the centerline of joints. The process parameters are also optimized using Taguchi’s five-level experimental design. The optimum process parameters are determined, employing ultimate tensile strength (UTS) as a response parameter. A statistical test “analysis of variance” is used to check the adequacy of the model. It has been observed that rotational speed and feed rate are the predominant factors for UTS and microhardness.
Journal Article

Response of Austempering Heat Treatment on Microstructure and Mechanical Property in Different Zones of As-Welded Ductile Iron (DI)

2018-05-08
Abstract Sound ductile iron (DI) welded joints were performed using developed coated electrode and optimized welding parameters including post weld heat treatment (PWHT).Weldments consisting of weld metal, partially melted zone (PMZ), heat affected zone (HAZ) and base metal were austenitized at 900 °C for 2 hour and austempered at 300 °C and 350 °C for three different holding time (1.5 hour, 2 hour and 2.5 hour). In as-weld condition, microstructures of weld metal and PMZ show ledeburitic carbide and alloyed pearlite, but differ with their amount. Whereas microstructure of HAZ shows pearlite with some ledeburitic carbide and base metal shows only ferrite.
Journal Article

Residual Stresses and Plastic Deformation in Self-Pierce Riveting of Dissimilar Aluminum-to-Magnesium Alloys

2018-05-08
Abstract In this work, the complex relationship between deformation history and residual stresses in a magnesium-to-aluminum self-pierce riveted (SPR) joint is elucidated using numerical and experimental approaches. Non-linear finite element (FE) simulations incorporating strain rate and temperature effects were performed to model the deformation in the SPR process. In order to accurately capture the deformation, a stress triaxiality-based damage material model was employed to capture the sheet piercing from the rivet. Strong visual comparison between the physical cross-section of the SPR joint and the simulation was achieved. To aid in understanding of the role of deformation in the riveting process and to validate the modeling approach, several experimental measurements were conducted. To quantify the plastic deformation from the piercing of the rivet, micro hardness mapping was performed on a cross-section of the SPR joint.
Journal Article

Parameter Sensitivity and Process Time Reduction for Friction Element Welding of 6061-T6 Aluminum to 1500 MPa Press-Hardened Steel

2018-12-14
Abstract Conventional fusion joining techniques pervasive in the automotive industry are unable to effectively join aluminum and steel. To solve this problem, a technique termed friction element welding (FEW) has been developed, which is able to join any nonferrous top sheet material to a base steel layer, independent of the base layer strength. FEW works on the same principles as friction welding, as a steel element is pushed and rotated against a nonferrous top sheet to create frictional energy which softens and flows the material around the fastener shaft and under the fastener head, exposing the steel below. The element then contacts the steel and bonds through traditional friction welding. FEW is a four-step process (penetration, cleaning, welding, compression), with two to four parameters (endload, spindle speed, displacement transition, time transition) controlling each step.
Journal Article

Optimization of WEDM Cutting Parameters on Surface Roughness of 2379 Steel Using Taguchi Method

2018-04-07
Abstract Surface roughness is one of the important aspects in producing quality die. Wire Electrical Discharge Machine (WEDM) is commonly used in tool and die fabrication, since the die material is usually difficult to cut using traditional metal removal processes. Selection of optimal WEDM cutting parameters is crucial to obtain quality die finish. In this study, 2379 steel which equivalent to SKD 11 is selected as the die material. Four main WEDM cutting parameters, namely, pulse duration (A), pulse interval (B), servo voltage (C), ignition pulse current (D), were experimentally evaluated for both main cut and multiple trim cuts using Taguchi Method. Taguchi’s L9 orthogonal array is employed for experimental design and analysis of variance (ANOVA) was used in recognizing levels of significance of WEDM cutting parameters.
Journal Article

Obstacle Avoidance for Self-Driving Vehicle with Reinforcement Learning

2017-09-23
Abstract Obstacle avoidance is an important function in self-driving vehicle control. When the vehicle move from any arbitrary start positions to any target positions in environment, a proper path must avoid both static obstacles and moving obstacles of arbitrary shape. There are many possible scenarios, manually tackling all possible cases will likely yield a too simplistic policy. In this paper reinforcement learning is applied to the problem to form effective strategies. There are two major challenges that make self-driving vehicle different from other robotic tasks. Firstly, in order to control the vehicle precisely, the action space must be continuous which can’t be dealt with by traditional Q-learning. Secondly, self-driving vehicle must satisfy various constraints including vehicle dynamics constraints and traffic rules constraints. Three contributions are made in this paper.
Journal Article

Numerical and Experimental Investigation of the Optimization of Vehicle Speed and Inter-Vehicle Distance in an Automated Highway Car Platoon to Minimize Fuel Consumption

2018-06-22
Abstract The development of the technology of automated highways promises the opportunity for the vehicles to travel safely at a closer distance concerning each other. As such, vehicles moving in the wake of others experience a reduction in fuel consumption. This article investigates the effect of longitudinal distance between two passenger cars on drag coefficients numerically and experimentally. For the numerical analysis, the fluid flow at car speeds of 70, 90 and 110 km/h were examined. The Artificial Intelligence coding was applied to train an Artificial Neural Network to extend the calculated data. The optimum values for the inter-vehicle distance and the vehicle speed to assure the least drag coefficient are obtained. To support the numerical results an instrument designed and built particularly to accurately measure the fuel consumption was installed on a midsize sedan car and some field tests were carried out.
Journal Article

Numerical Prediction of Various Failure Modes in Spotweld Steel Material

2018-05-11
Abstract Crash simulation is targeted mainly carried out by the collision regulations FMVSS simulation to identify problems in vehicle structures. A modern car structure consist of several thousand weld-type connections, and failure in these connections plays an important role for the crashworthiness of the vehicle. Therefore accurate modeling of these connections is important for the automotive industry in order to improve Vehicle collision characteristics. In pursuit of this key requirement, we introduced a proper methodology for the development detailed weld model to study structural response of the weld when the applied load range is beyond the yield strength. Three-dimensional finite element (FE) models of spot welded joints are developed using the LS-Dyna FE code. In this process the force estimation model of spot welds is explained. The results from this paper shows good agreement between the simulations and the tests.
Journal Article

Movement Prediction Hypotheses for Pedestrians and Trajectory Planning for Cooperative Driving Systems

2018-12-19
Abstract It is a challenge to find a safe trajectory for automated vehicles in urban environments with pedestrians. The prediction of future movements with 100% certainty is impossible, if the intention is unknown. A Gaussian process approach is used to formulate future movement hypotheses of the pedestrian based on historical movements. A mixed integer linear programming (MILP) optimization approach is used for the trajectory planning of the vehicle. The collision probability between the ego-vehicle and pedestrian is used as constraints in the optimization. This approach is useful for cooperative vehicle systems, with historical movement data in a fixed urban environment (e.g., intersection) and the premise that pedestrians follow typical movement data.
Journal Article

Mixture Distributions in Autonomous Decision-Making for Industry 4.0

2019-05-29
Abstract Industry 4.0 is expected to revolutionize product development and, in particular, manufacturing systems. Cyber-physical production systems and digital twins of the product and process already provide the means to predict possible future states of the final product given the current production parameters. With the advent of further data integration coupled with the need for autonomous decision-making, methods are needed to make decisions in real time and in an environment of uncertainty in both the possible outcomes and in the stakeholders’ preferences over them. This article proposes a method of autonomous decision-making in data-intensive environments, such as a cyber-physical assembly system. Theoretical results in group decision-making and utility maximization using mixture distributions are presented. This allows us to perform calculations on expected utility accurately and efficiently through closed-form expressions, which are also provided.
Journal Article

Machining Quality Analysis of Powertrain Components Using Plane Strain Finite Element Cutting Models

2018-05-07
Abstract Finite Element Analysis (FEA) of metal cutting is largely the domain of research organizations. Despite significant advances towards accurately modelling metal machining processes, industrial adoption of these advances has been limited. Academic studies, which mainly focused on orthogonal cutting, fail to address this discrepancy. This paper bridges the gap between simplistic orthogonal cutting models and the complex components typical in the manufacturing sector. This paper outlines how to utilize results from orthogonal cutting simulations to predict industrially relevant performance measures efficiently. In this approach, using 2D FEA cutting models a range of feed, speed and rake angles are simulated. Cutting force coefficients are then fit to the predicted cutting forces. Using these coefficients, forces for 3D cutting geometries are calculated.
Journal Article

Localization and Perception for Control and Decision-Making of a Low-Speed Autonomous Shuttle in a Campus Pilot Deployment

2018-11-12
Abstract Future SAE Level 4 and Level 5 autonomous vehicles (AV) will require novel applications of localization, perception, control, and artificial intelligence technology in order to offer innovative and disruptive solutions to current mobility problems. This article concentrates on low-speed autonomous shuttles that are transitioning from being tested in limited traffic, dedicated routes to being deployed as SAE Level 4 automated driving vehicles in urban environments like college campuses and outdoor shopping centers within smart cities. The Ohio State University has designated a small segment in an underserved area of the campus as an initial AV pilot test route for the deployment of low-speed autonomous shuttles. This article presents initial results of ongoing work on developing solutions to the localization and perception challenges of this planned pilot deployment.
Journal Article

Joint Mechanism and Prediction of Strength for a Radial Knurling Connection of Assembled Camshaft Using a Subsequent Modeling Approach

2018-06-25
Abstract Knurling joint applied in assembled camshaft has developed rapidly in recent years, which have exhibited great advantages against conventional joint methods in the aspects of automation, joint precision, thermal damage, noise, and near net shape forming. Both quality of assembly process and joint strength are the key requirements for manufacturing a reliable assembled camshaft. In this article, a finite element predictive approach including three subsequent models (knurling, press-fit and torsion strength) has been established. Johnson-Cook material model has been used to simulate the severe plastic deformation of the material. The residual stress field calculated from the knurling process was transferred as initial condition to the press-fit model to predict the press-fit load. The predicted press-fit load, torque strength and displacement of cam profile before failure were calculated.
Journal Article

Investigation of Residual Stresses in Cold-Formed Steel Sections with Nonlinear Strain-Hardened Material Model

2018-09-17
Abstract In this article, forming residual stresses in cold-formed small-radius corner sections are analytically predicted with the consideration of the shift in the neutral axis and the nonlinear strain-hardened material model. The predicted forming stress results in the transverse direction show a trend of increased compressive residual stress in the outer surface and reduced tensile residual stress in the inner surface as the corner radius-to-thickness ratio increases in small-radius bends. In the longitudinal direction, there is no significant change in the residual stress values observed in the inner and outer surfaces with respect to an increase in corner radius-to-thickness ratios. But a considerable decrease in compressive residual stress and an increase in tensile stress values are observed in the midsection areas with an increase in the corner radius-to-thickness ratio.
Journal Article

Influence of the Friction Coefficient in Self-Pierce Riveting Simulations: A Statistical Analysis

2018-05-08
Abstract In this work, optimal modeling parameters for self-pierce riveting (SPR) were determined using a factorial design of experiments (DOE). In particular, we show statistically how each of the calibrating parameters used in modeling the SPR process through nonlinear finite element modeling can drastically change the geometry of the joint. The results of this study indicate that the degree of interlock, which is a key feature of a sound joint, is largely influenced by the friction between the die and bottom sheet as well as the friction between the rivet and top sheet. Furthermore, this numerical study also helped elucidate the role of friction in SPR and sheds light on how coatings with diverse friction coefficients can affect material deformation and ultimately structural integrity of the joint.
Journal Article

Improving Hole Expansion Ratio by Parameter Adjustment in Abrasive Water Jet Operations for DP800

2018-09-17
Abstract The use of Abrasive Water Jet (AWJ) cutting technology can improve the edge stretchability in sheet metal forming. The advances in technology have allowed significant increases in working speeds and pressures, reducing the AWJ operation cost. The main objective of this work was to determine the effect of selected AWJ cutting parameters on the Hole Expansion Ratio (HER) for a DP800 (Dual-Phase) Advanced High-Strength Steel (AHSS) with s0 = 1.2 mm by using a fractional factorial design of experiments for the Hole Expansion Tests (HET). Additionally, the surface roughness and residual stresses were measured on the holes looking for a possible relation between them and the measured HER. A deep drawing quality steel DC06 with s0 = 1.0 mm was used for reference. The fracture occurrence was captured by high-speed cameras and by Acoustic Emissions (AE) in order to compare both methods.
Journal Article

Impact of Dynamic Characteristics of Wheel-Rail Coupling on Rail Corrugation

2019-07-02
Abstract To gain a better understanding of the characteristics of corrugation, including the development and propagation of corrugation, and impact of vehicle and track dynamics, a computational model was established, taking into account the nonlinearity of vehicle-track coupling. The model assumes a fixed train speed of 300 km/h and accounts for vertical interaction force components and rail wear effect. Site measurements were used to validate the numerical model. Computational results show that (1) Wheel polygonalisation corresponding to excitation frequency of 545-572 Hz was mainly attributed to track irregularity and uneven stiffness of under-rail supports, which in turn leads to vibration modes of the bogie and axle system in the frequency range of 500-600 Hz, aggregating wheel wear. (2) The peak response frequency of rail of the non-ballasted track coincides with the excitation frequency of wheel-rail coupling; the resonance results in larger wear amplitude of the rail.
Journal Article

Feature-Based Response Classification in Nonlinear Structural Design Simulations

2018-07-24
Abstract An applied system design analysis approach for automated processing and classification of simulated structural responses is presented. Deterministic and nonlinear dynamics are studied under ideal loading and low noise conditions to determine fundamental system properties, how they vary and possibly interact. Using powerful computer resources, large amounts of simulated raw data can be produced in a short period of time. Efficient tools for data processing and interpretation are then needed, but existing ones often require much manual preparation and direct human judgement. Thus, there is a need to develop techniques that help to treat more virtual prototype variants and efficiently extract useful information from them. For this, time signals are evaluated by methods commonly used within structural dynamics and statistical learning. A multi-level multi-frequency stimulus function is constructed and simulated response signals are combined into frequency domain functions.
Journal Article

Evaluation of Weldability and Mechanical Properties in Resistance Spot Welding of Ultrahigh-Strength TRIP1100 Steel

2018-12-14
Abstract To use steel in the automotive industry, it is essential to characterize its weldability and weldable current range. The resistance spot welding of ultrahigh-strength transformation-induced plasticity steel (TRIP1100 steel), which is a candidate for application in an autobody, is studied here. Identifying the weld lobe and the best welding parameters and studying the microstructure and mechanical properties of the spot welds of TRIP steel were done using metallurgical techniques, tensile-shear and cross-tension tests, and fractography and microhardness testing. A partial fracture analysis (stepwise tensile test) showed a crack initiated at the tip of the notch. The best range for welding current was found to be 10-12 kA. The diameter of the weld nugget increased up to 5√t; however, it was found that at least 15% increase in the diameter of the weld nugget can result in a more favorable failure. The ductility ratio was found to be less than 0.5 for ultrahigh-strength steel.
X