Refine Your Search

Topic

Search Results

Journal Article

μ-CT Investigation into the Impact of a Fuel-Borne Catalyst Additive on the Filtration Efficiency and Backpressure of Gasoline Particulate Filters

2022-01-18
Abstract An investigation into the pre-ashing of new gasoline particulate filters (GPFs) has demonstrated that the filtration efficiency of such filters can be improved by up to 30% (absolute efficiency improvement) when preconditioned using ash derived from a fuel-borne catalyst (FBC) additive. The additive is typically used in diesel applications to enable diesel particulate filter (DPF) regeneration and can be added directly into the fuel tank of the vehicle. This novel result was compared with ash derived from lube oil componentry, which has previously been shown to improve filtration efficiency in GPFs. The lube oil-derived ash utilized in this work improved the filtration efficiency of the GPF by −30%, comparable to the ash derived from the FBC additive.
Journal Article

Worsening Perception: Real-Time Degradation of Autonomous Vehicle Perception Performance for Simulation of Adverse Weather Conditions

2022-01-06
Abstract Autonomous vehicles (AVs) rely heavily upon their perception subsystems to “see” the environment in which they operate. Unfortunately, the effect of variable weather conditions presents a significant challenge to object detection algorithms, and thus, it is imperative to test the vehicle extensively in all conditions which it may experience. However, the development of robust AV subsystems requires repeatable, controlled testing—while real weather is unpredictable and cannot be scheduled. Real-world testing in adverse conditions is an expensive and time-consuming task, often requiring access to specialist facilities. Simulation is commonly relied upon as a substitute, with increasingly visually realistic representations of the real world being developed.
Journal Article

When and How to Apply Automatic Emergency Brakes Based on Risk Perception and Professional Driver Emergency Braking Behavior

2023-07-26
Abstract The key issues of automatic emergency braking (AEB) control algorithm are when and how to brake. This article proposes an AEB control algorithm that integrates risk perception (RP) and emergency braking characteristics of professional drivers for rear-end collision avoidance. Using the formulated RP by time to collision (TTC) and time headway (THW), the brake trigger time can be determined. Based on the professional driver fitting (PDF) characteristic, the brake pattern can be developed. Through MATLAB/Simulink simulation platform, the European New Car Assessment Programme (Euro-NCAP) test scenarios are used to verify the proposed control algorithm. The simulation results show that compared with the TTC control algorithm, PDF control algorithm, and the integrated PDF and TTC control algorithm, the proposed integrated PDF and RP control algorithm has the best performance, which can not only ensure safety and brake comfort, but also improve the road resource utilization rate.
Journal Article

What Can User Typologies Tell Us about Carsickness Criticality in Future Mobility Systems

2022-02-15
Abstract Car manufacturers are continuously improving passenger comfort by advancing technologies including highly automated driving. Before the broad introduction of automated driving, specific human factors regarding passenger comfort must be considered, including motion sickness. Therefore, the identification of the frequency of motion sickness and associated factors in the population is needed to extrapolate the effects for future mobility systems. We conducted three surveys between 2015 and 2020, asking people questions about their experience with motion sickness in cars. Based on the responses of 1165 participants, gender and age showed a strong influence on the self-reported frequency of motion sickness. For deeper analysis, a logistic order regression model was used to estimate the frequency of motion sickness for different user typologies.
Journal Article

Weld Fatigue Damage Assessment of Rail Track Maintenance Equipment: Regulatory Compliance and Practical Insights

2024-03-04
Abstract The use of appropriate loads and regulations is of great importance in weld fatigue assessment of rail on-track maintenance equipment and similar vehicles for optimized design. The regulations and available loads, however, are often generalized for several categories, which proves to be overly conservative for some specific categories of machines. EN (European Norm) and AAR (Association of American Railroads) regulations play a pivotal role in determining the applicable loads and acceptance criteria within this study. The availability of track-induced fatigue load data for the cumulative damage approach in track maintenance machines is often limited. Consequently, the FEA-based validation of rail track maintenance equipment often resorts to the infinite life approach rather than cumulative damage approach for track-induced travel loads, resulting in overly conservative designs.
Journal Article

Water Droplet Collison and Erosion on High-Speed Spinning Wheels

2024-04-04
Abstract The water droplet erosion (WDE) on high-speed rotating wheels appears in several engineering fields such as wind turbines, stationary steam turbines, fuel cell turbines, and turbochargers. The main reasons for this phenomenon are the high relative velocity difference between the colliding particles and the rotor, as well as the presence of inadequate material structure and surface parameters. One of the latest challenges in this area is the compressor wheels used in turbochargers, which has a speed up to 300,000 rpm and have typically been made of aluminum alloy for decades, to achieve the lowest possible rotor inertia. However, while in the past this component was only encountered with filtered air, nowadays, due to developments in compliance with tightening emission standards, various fluids also collide with the spinning blades, which can cause mechanical damage.
Journal Article

WM-LES-Simulation of a Generic Intake Port Geometry

2018-06-18
Abstract Fluid mechanical design of the cylinder charge motion is an important part of an engine development. In the present contribution an intake port geometry is proposed that can be used as a test case for intake port flow simulations. The objective is to fill the gap between generic test cases, such as the backward facing step or the sudden expansion, and simulations of proprietary intake ports, which are barely accessible in the community. For the intake geometry measurement data was generated on a flow-through test bench and a wall-modeled LES-simulation using a hybrid RANS/LES approach for near-wall regions was conducted. The objective is to generate and analyze a reference flow case. Since mesh convergence studies are too costly for scale resolving approaches only one simulation was done, but on a very fine and mostly block-structured numerical mesh to achieve minimal numerical dissipation.
Journal Article

Visualization and Statistical Analysis of Passive Pre-chamber Knock in a Constant-volume Optical Engine

2023-10-20
Abstract This study investigates the behavior of pre-chamber knock in comparison to traditional spark ignition engine knock, using a modified constant-volume gasoline engine with an optically accessible piston. The aim is to provide a deeper understanding of pre-chamber knock combustion and its potential for mitigating knock. Five passive pre-chambers with different nozzle diameters, volumes, and nozzle numbers were tested, and nitrogen dilution was varied from 0% to 10%. The stochastic nature of knock behavior necessitates the use of statistical methods, leading to the proposal of a high-frequency band-pass filter (37–43 kHz) as an alternative pre-chamber knock metric. Pre-chamber knock combustion was found to exhibit fewer strong knock cycles compared to SI engines, indicating its potential for mitigating knock intensity. High-speed images revealed pre-chamber knock primarily occurs near the liner, where end-gas knock is typically exhibited.
Journal Article

Vibration Response Properties in Frame Hanging Catalyst Muffler

2018-07-24
Abstract Dynamic stresses exist in parts of a catalyst muffler caused by the vibration of a moving vehicle, and it is important to clarify and predict the vibration response properties for preventing fatigue failures. Assuming a vibration isolating installation in the vehicle frame, the vibration transmissibility and local dynamic stress of the catalyst muffler were examined through a vibration machine. Based on the measured data and by systematically taking vibration theories into consideration, a new prediction method of the vibration modes and parameters was proposed that takes account of vibration isolating and damping. A lumped vibration model with the six-element and one mass point was set up, and the vibration response parameters were analyzed accurately from equations of motion. In the vibration test, resonance peaks from the hanging bracket, rubber bush, and muffler parts were confirmed in three excitation drives, and local stress peaks were coordinate with them as well.
Journal Article

Vibration Mitigation of Commercial Vehicle Active Tandem Axle Suspension System

2022-01-24
Abstract A tandem axle suspension is an important system to the ride comfort and vehicle stability of and road damage experience from commercial vehicles. This article introduces an investigation into the use of a controlled active tandem axle suspension, which for the first time enables more effective control using two fuzzy logic controllers (FLC). The proposed controllers compute the actuator forces based on system outputs: displacements, velocities, and accelerations of movable parts of tandem axle suspension as inputs to the controllers, in order to achieve better ride comfort and vehicle stability and extend the lifetime of road surface than the conventional passive suspension. A mathematical model of a six-degree-of-freedom (6-DOF) tandem axle suspension system is derived and simulated using Matlab/Simulink software.
Journal Article

Vertical and Longitudinal Coupling Control Approach for Semi-active Suspension System Using Mechanical Hardware-in-the-Loop Simulation

2021-03-12
Abstract When the vehicle is under braking condition in the longitudinal motion, the vehicle body will tilt due to the inertial force in motion. A high amplitude will result in uncomfortable feelings of the occupant, such as nervousness or dizziness. To solve the problem, this article presents an adaptive damping system (ADS), which combines the vehicle anti-pitch compensation control with the mixed skyhook (SH) and acceleration-driven-damper (ADD) control algorithm. This ADS can not only improve the vibration effect of the vertical motion for the vehicle but also consider the longitudinal motion of the vehicle body. In addition, a new damper mechanical hardware-in-the-loop test bench is built to verify the effectiveness of the algorithm.
Journal Article

Vehicle State Estimation Based on Unscented Kalman Filtering and a Genetic Algorithm

2020-09-22
Abstract A critical component of vehicle dynamic control systems is the accurate and real-time knowledge of the vehicle’s key states and parameters when running on the road. Such knowledge is also essential for vehicle closed-loop feedback control. Vehicle state and parameter estimation has gradually become an important way to soft-sense some variables that are difficult to measure directly using general sensors. In this work, a seven degrees-of-freedom (7-DOF) nonlinear vehicle dynamics model is established, where consideration of the Magic formula tire model allows us to estimate several vehicle key states using a hybrid algorithm containing an unscented Kalman filter (UKF) and a genetic algorithm (GA). An estimator based on the hybrid algorithm is compared with an estimator based on just a UKF. The results show that the proposed estimator has higher accuracy and fewer computation requirements than the UKF estimator.
Journal Article

Vehicle Stability Control through Optimized Coordination of Active Rear Steering and Differential Driving/Braking

2018-07-05
Abstract In this article, a hierarchical coordinated control algorithm for integrating active rear steering and driving/braking force distribution (ARS+D/BFD) was presented. The upper-level control was synthesized to generate the required rear steering angle and external yaw moment by using a sliding-mode controller. In the lower-level controller, a control allocation algorithm considering driving/braking actuators and tire forces constraints was designed to assign the desired yaw moment to the four wheels. To this end, an optimization problem including several equality and inequality constraints were defined and solved analytically. Finally, computer simulation results suggest that the proposed hierarchical control scheme was able to help to achieve substantial enhancements in handling performance and stability.
Journal Article

Vehicle Dynamics Control Using Model Predictive Control Allocation Combined with an Adaptive Parameter Estimator

2020-07-08
Abstract Advanced passenger vehicles are complex dynamic systems that are equipped with several actuators, possibly including differential braking, active steering, and semi-active or active suspensions. The simultaneous use of several actuators for integrated vehicle motion control has been a topic of great interest in literature. To facilitate this, a technique known as control allocation (CA) has been employed. CA is a technique that enables the coordination of various actuators of a system. One of the main challenges in the study of CA has been the representation of actuator dynamics in the optimal CA problem (OCAP). Using model predictive control allocation (MPCA), this problem has been addressed. Furthermore, the actual dynamics of actuators may vary over the lifespan of the system due to factors such as wear, lack of maintenance, etc. Therefore, it is further required to compensate for any mismatches between the actual actuator parameters and those used in the OCAP.
Journal Article

Vehicle Braking Performance Improvement via Electronic Brake Booster

2024-02-10
Abstract Throughout the automobile industry, the electronic brake boost technologies have been widely applied to support the expansion of the using range of the driver assist technologies. The electronic brake booster (EBB) supports to precisely operate the brakes as necessary via building up the brake pressure faster than the vacuum brake booster. Therefore, in this article a novel control strategy for the EBB based on fuzzy logic control (FLC) is developed and studied. The configuration of the EBB is established and the system model including the permanent magnet synchronous motor (PMSM), a two-stage reduction transmission (gears and a ball screw), a servo body, reaction disk, and the hydraulic load are modeled by MATLAB/Simulink. The load-dependent friction has been compensated by using Karnopp friction model. Due to the strong nonlinearity on the EBB components and the load-dependent friction, FLC has been used for the control algorithm.
Journal Article

Vehicle Aerodynamic Optimization: On a Combination of Adjoint Method and Efficient Global Optimization Algorithm

2019-04-26
Abstract This article presents a workflow for aerodynamic optimization of vehicles that for the first time combines the adjoint method and the efficient global optimization (EGO) algorithm in order to take advantage of both the gradient-based and gradient-free methods for aerodynamic optimization problems. In the workflow, the adjoint method is first applied to locate the sensitive surface regions of the baseline vehicle with respect to the objective functions and define a proper design space with reasonable design variables. Then the EGO algorithm is applied to search for the optimal site in the design space based on the expected improvement (EI) function. Such workflow has been applied to minimize the aerodynamic drag for a mass-produced electric vehicle. With the help of STAR-CCM+ and its adjoint solver, sensitive surface regions with respect to the aerodynamic drag are first located on the vehicle.
Journal Article

Validation of Kinetic Mechanisms against Various Ignition Delay Data and the Development of Ignition Delay Correlations for Ethanol, Natural Gas, and Primary Reference Fuel Blends under Homogeneous Charge Compression Ignition Conditions

2021-09-21
Abstract Homogeneous Charge Compression Ignition (HCCI) is a promising advanced combustion concept with high efficiencies and low emissions. Chemical kinetic mechanisms and ignition delay correlations (IDCs) are often applied to simulate HCCI combustion. However, a large number of mechanisms and correlations are not developed specifically for HCCI conditions, i.e., lean mixtures and usually with significant residual gas fractions (RGF). To address this issue, a two-part study is conducted. First, experimental ignition delay time (IDT) data from literature under typical HCCI conditions is collected. Then, thirteen widely applied mechanisms for ethanol, natural gas, and primary reference fuel (PRF) blends of isooctane and n-heptane are validated by running constant-volume simulations. Their performance and accuracy are evaluated. Second, the mechanism with the highest accuracy for each fuel is used to generate IDCs for HCCI conditions.
Journal Article

Using Numerical Simulation to Obtain Length of Constant Area Section in Scramjet Combustor

2020-03-16
Abstract Constant area section length downstream to the fuel injection point is a crucial dimension of scramjet duct geometry. It has a major contribution in creating the maximum effective pressure inside the combustor that is required for propulsion. The length is limited by the thermal choking phenomenon, which occurs when heat is added in a flow through constant area duct. As per theory, to avoid thermal choking the constant area section length depends upon the inlet conditions and the rate of heat addition. The complexity related to mixing and combustion process inside the supersonic stream makes it difficult to predict the rate of heat addition and in turn the length. Recent efforts of simulating the reacting flow inside scramjet combustors are encouraging and can be useful in this regard. The presented work attempts to use simulation results of scramjet combustion for predicting the constant area section length for a typical scramjet combustor.
Journal Article

Use of Artificial Neural Network to Develop Surrogates for Hydrotreated Vegetable Oil with Experimental Validation in Ignition Quality Tester

2024-02-01
Abstract This article presents surrogate mixtures that simulate the physical and chemical properties in the auto-ignition of hydrotreated vegetable oil (HVO). Experimental investigation was conducted in the Ignition Quality Tester (IQT) to validate the auto-ignition properties with respect to those of the target fuel. The surrogate development approach is assisted by artificial neural network (ANN) embedded in MATLAB optimization function. Aspen HYSYS is used to calculate the key physical and chemical properties of hundreds of mixtures of representative components, mainly alkanes—the dominant components of HVO, to train the learning algorithm. Binary and ternary mixtures are developed and validated in the IQT. The target properties include the derived cetane number (DCN), density, viscosity, surface tension, molecular weight, and volatility represented by the distillation curve. The developed surrogates match the target fuel in terms of ignition delay and DCN within 6% error range.
Journal Article

Usage of 2-Stroke Engines for Hybrid Vehicles

2022-03-24
Abstract As the automotive industry moves toward electrification, battery costs and vehicle range are two large issues that will delay this movement. These issues can be partially resolved through the use of series-hybrid vehicles, which can replace a portion of the batteries with a small engine that serves to recharge the battery. Given the size, weight, and operational constraints of this engine, a 2-stroke engine makes sense. Indeed, 2-stroke engines are currently being used for a number of applications including consumer products, small ground vehicles, boats, and drones. The technology has significantly improved to allow for reduced emissions and increased efficiency, especially through the use of direct injection. This article discusses the state of technology for 2-stroke engines and its application in series-hybrid vehicles. In particular, the use of a 2-stroke engine as a range extender provides significant benefit in range and cost over fully electric vehicles.
X