Refine Your Search

Topic

Search Results

Journal Article

Wheel Chock Key Design Elements and Geometrical Profile for Truck Vehicle Restraint

2018-06-06
Abstract Wheel chocks are rather simple compliant mechanisms for stabilizing vehicles at rest. However, chocks must be carefully designed given the complex interaction between the chock and the tire/suspension system. Despite their importance for safety, literature is surprisingly limited in terms of what makes a wheel chock efficient. Using simple but reliable quasi-static mechanical models, this study identifies mechanical requirements that help to avoid a number of failure modes associated with many existing wheel chocks. Given that chock grounding is not always possible, a chock’s maximum restraining capacity is only obtained when the wheel is completely supported by the chock. A generic chock profile is proposed to achieve this objective while mitigating undesirable failure modes. The profile is based on fundamental mechanical principles and no assumption is made on the load interaction between the chock and the wheel.
Journal Article

Vibration Mitigation of Commercial Vehicle Active Tandem Axle Suspension System

2022-01-24
Abstract A tandem axle suspension is an important system to the ride comfort and vehicle stability of and road damage experience from commercial vehicles. This article introduces an investigation into the use of a controlled active tandem axle suspension, which for the first time enables more effective control using two fuzzy logic controllers (FLC). The proposed controllers compute the actuator forces based on system outputs: displacements, velocities, and accelerations of movable parts of tandem axle suspension as inputs to the controllers, in order to achieve better ride comfort and vehicle stability and extend the lifetime of road surface than the conventional passive suspension. A mathematical model of a six-degree-of-freedom (6-DOF) tandem axle suspension system is derived and simulated using Matlab/Simulink software.
Journal Article

Vibration Analysis of the Bicycle-Car Model Considering Tire-Road Separation

2021-07-28
Abstract This article investigates the dynamics of non-smooth and nonlinear oscillations of a bicycle-car model, considering the tire-road separation. Road contact applies a non-holonomic constrain on the dynamics system that makes the equations of motion to be different under in-contact and off-contact conditions. The set of nonlinear equations of the system has been formulated based on nondimensionalization to minimize the number of parameters and generalize the results. To compare the quality of different suspensions in reducing the unpleasant no-contact conditions, we define a contact-free fraction indicator to measure the separation fraction time during a cycle of steady-state oscillation. An observation of frequency responses including vertical displacements, the pitch mode, and the domain of contact-free fraction of time has been investigated to clarify engineering design directions.
Journal Article

Vertical and Longitudinal Coupling Control Approach for Semi-active Suspension System Using Mechanical Hardware-in-the-Loop Simulation

2021-03-12
Abstract When the vehicle is under braking condition in the longitudinal motion, the vehicle body will tilt due to the inertial force in motion. A high amplitude will result in uncomfortable feelings of the occupant, such as nervousness or dizziness. To solve the problem, this article presents an adaptive damping system (ADS), which combines the vehicle anti-pitch compensation control with the mixed skyhook (SH) and acceleration-driven-damper (ADD) control algorithm. This ADS can not only improve the vibration effect of the vertical motion for the vehicle but also consider the longitudinal motion of the vehicle body. In addition, a new damper mechanical hardware-in-the-loop test bench is built to verify the effectiveness of the algorithm.
Journal Article

Vehicle Dynamics Control Using Model Predictive Control Allocation Combined with an Adaptive Parameter Estimator

2020-07-08
Abstract Advanced passenger vehicles are complex dynamic systems that are equipped with several actuators, possibly including differential braking, active steering, and semi-active or active suspensions. The simultaneous use of several actuators for integrated vehicle motion control has been a topic of great interest in literature. To facilitate this, a technique known as control allocation (CA) has been employed. CA is a technique that enables the coordination of various actuators of a system. One of the main challenges in the study of CA has been the representation of actuator dynamics in the optimal CA problem (OCAP). Using model predictive control allocation (MPCA), this problem has been addressed. Furthermore, the actual dynamics of actuators may vary over the lifespan of the system due to factors such as wear, lack of maintenance, etc. Therefore, it is further required to compensate for any mismatches between the actual actuator parameters and those used in the OCAP.
Journal Article

Using an Inerter-Based Suspension to Reduce Carbody Flexible Vibration and Improve Riding-Comfort

2023-02-01
Abstract The riding-comfort of high-speed trains affects the travel experience of passengers, and the lightweight design technology of the carbody increases the flexible vibration and reduces passenger comfort. To this end, a vertical dynamics model of railway vehicles is established to demonstrate the potential of using passive inerter-based suspensions to reduce the flexible vibration of the carbody and improve riding-comfort. According to the characteristics of the inerter component, an appropriate inerter-based suspension is applied to the railway vehicle to reduce low-frequency resonance. The sum of the comfort indexes of the three reference points of the carbody is optimized as the objective function to improve the passenger comfort of the whole vehicle. The results reveal that the inerter-based suspension applied to the primary or secondary suspension has different effects on vehicle vibration.
Journal Article

Tire-Road Separation Time Reduction by an Adaptive Proportional-Integral-Derivative Controller Utilizing Particle Swarm Optimization Algorithm

2021-05-05
Abstract The article examines quarter-car dynamics with the possible separation of its tire from the road. A set of nondimensionalized differential equations has been proposed to minimize the involved parameters. Time and frequency response investigation of the system has been analyzed insightfully considering tire-road separation. To measure the separation of the tire, a time fraction index is defined, indicating the fraction of separation time in a cycle at steady-state conditions. Minimizing the index is assumed as the objective of the optimized system. An actuator is applied to the vehicle suspension in parallel with the mainspring and damper of the suspension. Particle Swarm Optimization (PSO) is used to properly tune a Proportional-Integral-Derivative (PID) controller for the active suspension system excited by a harmonic excitation.
Journal Article

Time Domain Analysis of Ride Comfort and Energy Dissipation Characteristics of Automotive Vibration Proportional–Integral–Derivative Control

2024-02-05
Abstract A time domain analysis method of ride comfort and energy dissipation characteristics is proposed for automotive vibration proportional–integral–derivative (PID) control. A two-degrees-of-freedom single wheel model for automotive vibration control is established, and the conventional vibration response variables for ride comfort evaluation and the energy consumption vibration response variables for energy dissipation characteristics evaluation are determined, and the Routh stability criterion method was introduced to assess the impact of PID control on vehicle stability. The PID control parameters are tuned using the differential evolution algorithm, and to improve the algorithm’s adaptive ability, an adaptive operator is introduced, so that the mutation factor of differential evolution algorithm can change with the number of iterations.
Journal Article

The Effect of Structural Damping Foam on Tire Vibration

2020-02-28
Abstract Vehicle noise and vibration is a major focus during the design of the vehicle. The tire is a large contributor to the noise and vibration experienced inside the vehicle cabin. Any unevenness or asperities in the road cause the tire structure to vibrate, which in turn causes components in the vehicle to vibrate and generate noise. It is common in the industry to use foam inserts inside the tire air cavity that reduces the noise generated. This foam is typically intended to reduce a specific resonance in the tire-the resonance due to the air cavity. Recently, there is interest in using foam as a structural damper to reduce structural resonances in the tire. A new analytical tire model for determining the effect that structural damping foam has on the noise and vibration characteristics of the tire has been developed. The theoretical formulation of this model is presented, as well as comparison with experiments and a parametric analysis of the model.
Journal Article

The Effect of Change in Assembly Sequence on Permanent Strain of Cab Suspension Console

2020-08-20
Abstract Heavy commercial vehicles play an important role in creating the trade and economic balance of countries. Also, the durability and safety of heavy commercial vehicles come to the fore. Heavy commercial vehicles consist of two parts. These are the chassis area with the equipment that allows the vehicle to move and the cabin section where the driver is located. The cabin area is the most important area that ensures the highest level of driver safety. Considering that the production of trucks is increasing day by day, it is inevitable for companies to increase their R&D activities in the field of cabin and cabin suspension systems for much safer, durable, and comfortable trucks. This study aims to determine the safe torque value of the fasteners and their assembly sequence of the Cab Suspension Console, which is one of the most important connection parts in a truck and which can cause a fatal accident by breaking.
Journal Article

TOC

2022-06-10
Abstract TOC
Journal Article

Sub-zero Quasi-static and Fatigue Behavior of SAE 1040 Automotive Anti-roll Bars in Flexure

2023-01-05
Abstract The objective of the study was to evaluate the quasi-static and fatigue performance of automotive anti-roll bars (ARBs) under extreme environmental conditions. Flexural quasi-static and fatigue tests of SAE 1040 steel were conducted above and below the ductile-to-brittle transition temperature (DBTT) in flexure and compared with their room temperature performance. The flexural strength increased by decreasing the temperature to −40°C. The fatigue lives are determined for stress levels of 87%, 60%, and 30% of their flexural strength under displacement mode in constant amplitude loading. Experimental stress versus the number of cycles (S-N) curves of SAE 1040 steel state that all tube specimens have fatigue limits that were more than 100,000 cycles at −40°C. The fatigue life of the SAE 1040 tube exhibited infinite life below the ductile-to-brittle transition (DBT).
Journal Article

Study of a Mono-Tube Hydraulic Energy Harvesting Shock Absorber

2019-09-23
Abstract In this chapter, a mono-tube hydraulic energy harvesting shock absorber is proposed. The absorber is featured with the autogeneration where it permits harvesting waste energy with a proper asymmetric ratio of compression/extension damping force can be obtained. Using the continuity equation and including the compressibility of the oil, equations that describe the variation of the oil pressure in model chambers are derived. Then, relations that relate chambers’ pressure with the damping force, the harvested power, and the system efficiency are derived. Results illustrate the effects of frequency, amplitude, external resistance, and chambers’ size on the damping force and the harvested power. The proposed model can harvest an average power of 500 W with maximum peak of 1800 W using an external resistance of 10 Ω at an input amplitude of 50 mm and frequency of 1.67 Hz.
Journal Article

Studies on Friction Mechanism of NAO Brake-Pads Containing Potassium Titanate Powder as a Theme Ingredient

2017-09-17
Abstract Potassium titanate (KT) fibers/whiskers are used as a functional filler for partial replacement of asbestos in NAO friction materials (FMs). Based on little information reported in open literature; its exact role is not well defined since some papers claim it as the booster for resistance to fade (FR), or wear (WR) and sometimes as damper for friction fluctuations. Interestingly, KT fibers and whiskers (but not powder) are proved as carcinogens by the International Agency for Research on Cancer (IARC). However, hardly any efforts are reported on exploration of influence of KT powder and its optimum amount in NAO FMs (realistic composites) in the literature. Hence a series of five realistic multi-ingredient compositions in the form of brake-pads with similar parent composition but varying in the content of KT powder from 0 to 15 wt% (in the steps of 3) were developed. These composites were characterized for physical, mechanical, chemical and tribological performance.
Journal Article

Structural Design and Analysis of Sliding Composite Mono Leaf Spring

2023-06-10
Abstract The lightweight structure of a semitrailer composite leaf spring is designed and manufactured using glass fiber composite to replace the conventional steel leaf spring. The sliding composite mono leaf spring was designed based on the conventional parabolic spring design theory. The composites product design (CPD) module of CATIA software is used to create the lamination of the composite leaf spring. Using finite element analysis of the position and proportion of ±45° biaxial layer by OptiStruct software, it is found that a certain proportion (nearly 5%) of a ±45° biaxial layer can effectively reduce the shear stress under the condition of keeping the total number of layers fixed. Then, the natural frequency, stiffness, and strength of the composite leaf spring are simulated by the finite element method. Finally, the stiffness, fatigue, and matching of the designed spring are tested by experiments.
Journal Article

Stability Analysis of Vehicle Shimmy System with Independent Suspension Based on Complexification-Averaging Method

2021-04-13
Abstract Based on the dynamic model of a quarter-vehicle system, a three degrees-of-freedom (DOF) dynamic model of the vehicle shimmy system with independent suspension is established by applying the second Lagrange equation. Numerical examples are employed to investigate the speed range and frequency characteristic of the vehicle shimmy system, and then the influence of the vertical load of the tire on vehicle shimmy is discussed. The equilibrium equation and characteristic polynomial of the shimmy system are obtained by using the complexification-averaging (CX-A) method, and the stability of the shimmy system is analyzed based on the first approximate stability theory. Furthermore, the boundary condition of Hopf bifurcation is investigated, and the stability boundary of the suspension parameters varying with the vehicle speed is obtained. The relevant conclusions can provide technical supports for the suppression of vehicle shimmy.
Journal Article

Spring Calculations Using Noonan’s XymT Method and an Eccentric Force

2019-10-14
Abstract The usual method of calculating spring deflection is to assume the end force acts through the central axis of the spring. The author takes a different approach where he calculates the eccentricity of the end force and from this calculates the spring deflection due to combined bending and torsion using a completely new model which he names the Noonan XymT Method. Also, the usual method widely used, where a strain energy approach is used, is proven to be in error. That statement is proven using a special example. Rough measurements have shown that the displacements calculated using the Strain Energy Method, can have errors as high as 40%, at a position up 0.6 coils from the bottom of the spring, and 10% at the top of the spring. The reason for this error has been identified, and calculations using Noonan’s XymT Method greatly reduces, if not eliminates, this error. This is particularly relevant in calculating individual coil stiffness and binding.
Journal Article

Simulation-Based Development for Active Suspension Control for Automated Driving Vehicles—Evaluation of Transferability to Real-World Testing

2022-04-25
Abstract Due to the transition of the driver to a passenger as well as the option of non-driving tasks, automated driving will necessitate adjustments of driving dynamics. In order to face higher comfort requirements and mitigate motion sickness not only horizontal dynamics but also vertical dynamics should be concerned. Therefore, we developed a novel control algorithm for active suspension systems, which takes the requirements of autonomous vehicles into account. Due to safety, cost reasons, and the unavailability of automated test vehicles, the controller was built up, tested, and tuned in simulation before final in-car testing. In this article we introduce a combined simulation and testing process for suspension control systems with focus on comfort measures. We successfully apply the method to the mentioned active suspension control algorithm with good accordance between simulation and measurement for low-frequency excitation.
Journal Article

Robustness Analysis of the Model Reference Control for Active Suspension System

2020-02-04
Abstract This article presents a robustness analysis study for the model reference controller (“MRC”) of active suspension system. The MRC employs both suspension look-ahead preview and wheelbase preview concepts. The methodology of the MRC is based on the ideal hybrid skyhook-groundhook scheme. A 13 degree of freedom full vehicle model is developed and validated. The engine mass, driver seat, and anti-roll bar are considered in the model. The MRC strategy uses eight proportional-integral-derivative (PID) controllers for both body and wheel control. A gradient based on optimization algorithm is applied to obtain the controller parameters using a cost function including both ride comfort and road holding performance. The robustness analysis of the controller is performed by evaluating the MRC controller performance under different driving conditions, including different road profiles, different vehicle speeds, and different vehicle loading.
Journal Article

Road Preview Control for Active Suspension System

2022-08-23
Abstract The industrialization of the measurement systems of road profiles enabled the deployment of the road preview control strategies for the vehicle-controlled suspensions. This article proposes a new active suspension control strategy in which a model reference controller (MRC) is improved through the road preview capability. The road preview control uses the feed-forward road input signals and the feedback vehicle state signals as controller inputs. A thirteen degree-of-freedom (DOF) full vehicle vertical dynamics model including stabilizer bars is used. Eight proportional integral derivative (PID) controllers for sprung and unsprung masses have been used in the control strategy. The controller parameters including the preview distance have been obtained by using a gradient-based optimization routine with an objective function that includes both ride comfort and road holding.
X