Refine Your Search

Topic

Search Results

Technical Paper

X-by-Wire: Opportunities, Challenges and Trends

2003-03-03
2003-01-0113
This paper will outline the results of a study performed to analyze the market introduction of x-by-wire applications in the context of weak global industry environment, technological and legislative challenges, standardization issues and end customer benefits. This paper attempts to provide a bird-view on influence factors and impacts for the x-by-wire market, including e.g. the end customer's acceptance and legal environment driving further development in specific areas. Further, major driving forces on semiconductor/component level will be outlined regarding e.g. pin-count, computation performance and heat dissipation, but also possible scenarios and solutions towards safe and efficient system design and partitioning.
Technical Paper

Virtual Prototypes as Part of the Design Flow of Highly Complex ECUs

2005-04-11
2005-01-1342
Automotive powertrain and safety systems under design today are highly complex, incorporating more than one CPU core, running with more than 100 MHz and consisting of several 10 million transistors. Software complexity increases similarly making new methodologies and tools mandatory to manage the overall system. The use of accurate virtual prototypes improves the quality of systems with respect to system architecture design and software development. This approach is demonstrated with the example of the PCP/GPTA subsystem for Infineon's AUDO-NG powertrain controllers.
Technical Paper

The Challenges of Next Generation Automotive Benchmarks

2007-04-16
2007-01-0512
More than ever, microcontroller performance in cars has a direct impact on the driving experience, on compliance with improved safety, ever-stricter emissions regulations, and on fuel economy. The simple microcontrollers formerly used in automobiles are now being replaced by powerful number-crunchers whose performance can no longer be measured in MIPS. Instead, their effectiveness is based on a coherent partitioning between analog and digital, hardware and software, tools and methodology. To make an informed choice among the available devices, what the designer needs are benchmarks that are specific to automotive applications, and which provide a realistic representation of how the device will perform in the automotive environment. This presentation will explore the role of new benchmarks in the development of complex automotive applications.
Journal Article

The Challenges of Devising Next Generation Automotive Benchmarks

2008-04-14
2008-01-0382
More than ever, microcontroller performance in cars has a direct impact on the driving experience, on compliance with improved safety, ever-stricter emissions regulations, and on fuel economy. The simple microcontrollers formerly used in automobiles are now being replaced by powerful number-crunchers with incredible levels of peripheral integration. As a result, performance can no longer be measured in MIPS (Millions of Instructions Per Second). A microcontroller's effectiveness is based on coherent partitioning between analog and digital, hardware and software, tools and methodology. To make an informed choice among the available devices, the designer needs benchmarks that are specific to automotive applications, and which provide a realistic representation of how the device will perform in the automotive environment.
Technical Paper

System-Level Partitioning Using Mission-Level Design Tool for Electronic Valve Application

2003-03-03
2003-01-0865
In defining innovative and cost-effective chip sets for future automotive applications, system architects need high-level tools that allow them to rapidly determine the best silicon partitioning for a given application in terms of system performance as well as cost. The tool needs to be flexible, modular, and swift such that the system designer can perform abstract simulation iterations quickly for various functional partitioning scenarios, without requiring excessive computer resources. The tool must also be portable and adaptable to provide a simulation environment suitable to systems- or car-manufacturers for in-depth applications simulation and architecture assessment. The semiconductor component definition process using such a “mission-level” design tool for the automotive application electronic valve will be demonstrated. Methods for the analysis of electronic valve control system architectures using mission-level simulation will be developed.
Technical Paper

Seamless Solution for Electronic Power Steering

2006-04-03
2006-01-0593
The number of safety critical automotive applications employing high current brushless motors continues to increase (Steering, Braking, and Transmission etc.). There are many benefits when moving from traditional solutions to electrically actuated solutions. Some of these benefits can include increased fuel economy, simplified vehicle installation and packaging, increased feature set, improved safety and/or convenience, simplified unit assembly and modular testability prior as well as during vehicle manufacturing. The trend to implement brushless motors in these applications (which require electronically controlled commutation) has also brought with it the need for powerful inverters, which primarily consist of Power MOSFETs and MOSFET Driver ICs. This paper reviews the challenges associated with the design of safety critical electronic systems which combine sensing, control and actuation.
Technical Paper

Routing Methods Considering Security and Real-Time of Vehicle Gateway System

2020-04-14
2020-01-1294
Recently, vehicle networks have increased complexity due to the demand for autonomous driving or connected devices. This increasing complexity requires high bandwidth. As a result, vehicle manufacturers have begun using Ethernet-based communication for high-speed links. In order to deal with the heterogeneity of such networks where legacy automotive buses have to coexist with high-speed Ethernet links vehicle manufacturers introduced a vehicle gateway system. The system uses Ethernet as a backbone between domain controllers and CAN buses for communication between internal controllers. As a central point in the vehicle, the gateway is constantly exchanging vehicle data in a heterogeneous communication environment between the existing CAN and Ethernet networks. In an in-vehicle network context where the communications are strictly time-constrained, it is necessary to measure the delay for such routing task.
Technical Paper

Redundant and Diverse Magnetic Field Digital Linear Hall Sensor Concept for ASIL D Applications

2017-03-28
2017-01-0053
Functional safe systems fulfilling the ISO 26262 standard are getting more important for automotive applications where additional redundant and diverse functionality is needed for higher rated ASIL levels. This can result in a very complex and expensive system setup. Here we present a sensor product developed according ISO 26262. This sensor product comprises a two channel redundant and also diverse implemented magnetic field sensor concept with linear digital outputs on one monolithically integrated silicon substrate. This sensor is used for ASIL D applications like power-steering torque measurement, where the torque is transferred into a magnetic field signal in a certain magnetic setup, but can also be used in other demanding sensor applications concerning safety. This proposed and also implemented solution is beneficial because of implementation on a single chip in one single chip-package but anyway fulfilling ASIL D requirements on system level.
Technical Paper

Over the Air Software Update Realization within Generic Modules with Microcontrollers Using External Serial FLASH

2017-03-28
2017-01-1613
Connecting mobile communication channels to vehicles’ networks is currently attracting engineers in a wide range. Herein the desire of vehicle manufacturers to remotely execute software updates over the air (SOTA) within electronic control units (ECU) is probably the field of highest attention at the moment. Today software updates are typically done at vehicle service stations and connection the vehicles electronic network via the onboard diagnosis (OBD) interface to a service computer. Herby the duration of the update is invisible to the user, as this happens during standard service appointments. With introduction of SOTA, these updates become very convenient to the customer and can lead to higher customer satisfaction levels. SOTA can be made transparent to the user however the method of implementation can affect the user experience.
Technical Paper

MultiCore Benefits & Challenges for Automotive Applications

2008-04-14
2008-01-0989
This paper will give an overview of multicore in automotive applications, covering the trends, benefits, challenges, and implementation scenarios. The automotive silicon industry has been building multicore and multiprocessor systems for a long time. The reasons for this choice have been: increased performance, safety redundancy, increased I/O & peripheral, access to multiple architectures (performance type e.g. DSP) and technologies. In the past, multiprocessors have been mainly considered as multi-die, multi-package with simple interconnection such as serial or parallel busses with possible shared memories. The new challenge is to implement a multicore, micro-processor that combines two or more independent processors into a single package, often a single integrated circuit (IC). The multicores allow a computing device to exhibit some form of thread-level parallelism (TLP).
Technical Paper

Motor Control in Auxiliary Drive Systems How to Choose the Best Fitting Electronic Solution

2014-04-01
2014-01-0323
In modern vehicles, the number of small electrical drive systems is still increasing continuously for blowers, fans and pumps as well as for window lifts, sunroofs and doors. Requirements and operating conditions for such systems varies, hence there are many different solutions available for controlling such motors. In most applications, simple, low-cost DC motors are used. For higher requirements regarding operating time and in stop-start capable systems, the focus turns to highly efficient and durable brushless DC motors with electronic commutation. This paper compares various electronic control concepts from a semiconductor vendor point of view. These concepts include discrete control using relays or MOSFETs. Furthermore integrated motor drivers are discussed, including system-on-chip solutions for specific applications, e.g. specific ICs for window lift motors with LIN interface.
Technical Paper

Mechatronic Solution for Motor Management

2002-03-04
2002-01-0473
A mechatronic approach to implementing a BLDC motor drive control system is described. The partitioning method used allows the motor power to be scaled from around 100 watts to 1 kilowatt. The chosen approach maps the required electronic functionality to different existing front-end technologies. By drawing on vast experience with back-end technologies, especially chip-on-chip assembly, it is possible to implement a system in a one-package solution. The advantages of each technology are used to achieve a cost-effective, space-saving solution.
Technical Paper

Integrated Mechatronic Design and Simulation of a Door Soft Close Automatic with Behavioral Models of Smart Power ICs

2002-03-04
2002-01-0564
Based on the example of a door soft close automatic the potential of integrated system simulation in the automotive systems development is demonstrated. The modeling approach is covering several physical domains like mechanics, electromagnetics and semiconductor physics. With adequate simplifying methods a time efficient model is generated, which allows system optimization in the concept phase. Time consuming redesigns can thus be minimized.
Technical Paper

Improved ECU End of Line Testing using Multicore Microcontroller

2015-04-14
2015-01-0186
End of Line tests are brief set of tests intended to evaluate ECU's in order to ensure correct functioning of its intended functionality. As these tests are executed on the production line, available time to perform these tests is limited. On one hand, faster production demands require these tests and its framework to be designed in a time optimized manner. On the other hand, increase in ECU functionality translates to an increase in test's functional coverage, requiring more time. Therefore the time taken to execute the tests reaches a critical point in overall ECU production. Availability of multicore microcontrollers with increase in clock speed can increase the performance of end of line tests, but design challenges e.g. synchronization do not guarantee a linear performance increase. Therefore, design of test execution framework is absolutely critical to increase performance of test execution.
Technical Paper

Hybrid Cars Setting New Challenges for Optimized Power Semiconductors

2014-04-01
2014-01-0242
The electrification of the powertrain is still one of the main challenges and innovation drivers for modern cars. With the introduction of the Toyota Prius, launched in Japan in 1997 the first commercially available hybrid car in mass production, the development continued towards the BMW i3 launched in July 2013. One main component for all kind of hybrid cars is still the power semiconductor, which is used for DC/DC converters and for the inverter to drive the electric motor for the traction control. What makes the selection of the right power semiconductor complex, is the variety of different voltage levels within the car (from standard 12V board net, the new 48V board net all the way up to 400V and above) plus different requirements in terms of switching and conduction performance, or accordingly power losses. The selection of device by application and voltage will be discussed in this paper.
Technical Paper

High Performance Processor Architecture for Automotive Large Scaled Integrated Systems within the European Processor Initiative Research Project

2019-04-02
2019-01-0118
Autonomous driving systems and connected mobility are the next big developments for the car manufacturers and their suppliers during the next decade. To achieve the high computing power needs and fulfill new upcoming requirements due to functional safety and security, heterogeneous processor architectures with a mixture of different core architectures and hardware accelerators are necessary. To tackle this new type of hardware complexity and nevertheless stay within monetary constraints, high performance computers, inspired by state of the art data center hardware, could be adapted in order to fulfill automotive quality requirements. The European Processor Initiative (EPI) research project tries to come along with that challenge for next generation semiconductors. To be as close as possible to series development needs for the next upcoming car generations, we present a hybrid semiconductor system-on-chip architecture for automotive.
Technical Paper

Hardware and Software Constraints for Automotive Firewall Systems?

2016-04-05
2016-01-0063
Introduction The introduction of Ethernet and Gigabit Ethernet [2] as the main invehicle network infrastructure is the technical foundation for different new functionalities such as piloted driving, minimizing the CO2- footprint and others. The high data rate of such systems influences also the used microcontrollers due the fact that a big amount of data has to be transferred, encrypted, etc. Figure 1 Motivation - Vehicles will become connected to uncontrolled networks The usage of Ethernet as the in-vehicle-network enables the possibility that future road vehicles are going to be connected with other vehicles and information systems to improve system functionality. These previously closed automotive systems will be opened up for external access (see Figure 1). This can be Car2X connectivity or connection to personal devices. Allowing vehicle systems to communicate with other systems that are not within their physical boundaries impose a previously non-existing security problem.
Technical Paper

Giant Magneto Resistors - Sensor Technology and Automotive Applications

2005-04-11
2005-01-0462
The paper will give an introduction to the principle of the giant magneto resistive - GMR - effect and the silicon system integration of GMR sensors. The two main applications of a GMR as a magnetic field strength sensor and as an angular field direction sensor will be discussed under consideration of automotive requirements. The typical applications of a magnetic field strength GMR sensor in incremental position and speed sensing and those of GMR angular field sensors in position sensing will be summarized. Finally advantages of GMR in those applications will be discussed and conclusions on the use of GMR in automotive sensing will be drawn.
Technical Paper

From Natural Language to Semi-Formal Notation Requirements for Automotive Safety

2015-04-14
2015-01-0265
The standard ISO 26262 stipulates a “top-down” approach based on the process “V” model, by conducting a hazard analysis and risk assessment to determine the safety goals, and subsequently derives the safety requirements down to the appropriate element level. The specification of safety goals is targeted towards identified hazardous events, whereas the classification of safety requirements does not always turn out non-ambiguous. While requirement formalization turns out to be advantageous, the translation from natural language to semi-formal requirements, especially in context of ISO 26262, poses a problem. In this publication, a new approach for the formalization of safety requirements is introduced, targeting the demands of safety standard ISO 26262. Its part 8, clause 6 (“Specification and management of safety requirements”) has no dedicated work product to accomplish this challenging task.
Technical Paper

Embedded System Tool to Support Debugging, Calibration, Fast Prototyping and Emulation

2004-03-08
2004-01-0304
Infineon's latest high-end automotive microcontrollers like TC1796 are complex Systems On Chip (SoC) with two processor cores and up to two internal multi-master buses. The complex interaction between cores, peripherals and environment provides a big challenge for debugging. For mission critical control like engine management the debugging approach must not be intrusive. The provided solution are dedicated Emulation Devices which are able to deal with several 10 Gbit/s of raw internal trace data with nearly no cost adder for mass production and system design. Calibration, which is used later in the development cycle, has different requirements, but is covered by the Emulation Devices as well. The architecture of TC1796ED comprises the unchanged TC1796 silicon layout, extended by a full In-Circuit Emulator (ICE) and calibration overlay memory on the same die. In most cases, the only debug/calibration tool hardware needed is a USB cable.
X