Refine Your Search

Search Results

Viewing 1 to 9 of 9
White Paper

The Use of Imaging for Powder Metal Characterization and Contamination Identification

2018-04-05
WP-0008
As AM technologies are being used with higher frequencywithin the automotive and aerospace industries, the interest in powder characterization and contaminant identification is growing—especially for suppliers looking to gain entry into these highly regulated industries. Standards for powder materials and methods used for aerospace applications are still be developed, and regulatory agencies such as the Federal Aviation Administration have been requesting that standards be developed as guidance for the industry. Methods such as CCSEM and HLS could be viable options for suppliers needing to adhere to a powder specification by demonstrating compliance. Solutions exist to integrate such methods into a production environment as exemplified by RJ Lee Group.
Technical Paper

TOC

2023-06-27
2022-22-0009
TOC
White Paper

PROACTIVE METHODS FOR ROAD SAFETY ANALYSIS

2017-10-12
WP-0005
To date, the universal metric for road safety has been historical crash data, specifically, crash frequency and severity, which are direct measures of safety. However, there are well-recognized shortcomings of the crash-based approach; its greatest drawback being that it is reactive and requires long observational periods. Surrogate measures of safety, which encompass measures of safety that do not rely on crash data, have been proposed as a proactive approach to road safety analysis. This white paper provides an overview of the concept and evolution of surrogate measures of safety, as well as the emerging and future methods and measures. This is followed by the identification of the standards needs in this discipline as well as the scope of SAE’s Surrogate Measures of Safety Committee.
Technical Paper

National Automotive Service Task Force: A Case Study of Industry Collaboration to Improve Serviceability by Resolving Gaps in Vehicle Service and Tool Information

2008-04-14
2008-01-1285
In 1990 in the USA, Section 206 of the Clean Air Act ushered in a new era in passenger car and light truck service and maintenance. Ensuing requirements led to introduction of sophisticated vehicle on-board diagnostic systems. These systems demand the increasing sophistication of service providers. The amount of service information has expanded exponentially. The sophistication of the tools needed to diagnose and repair vehicles has become increasingly complex. To meet the needs of today's service professionals, new systems had to be developed. The convergence of regulations, vehicle complexity, tool capabilities and the growing volume of service information required the vehicle producers and service communities to implement more efficient information delivery systems.
White Paper

Digital Standards Systems—An Integrated Approach to Engineering Standards Usage

2020-07-21
WP-0013
Industry standards are key enablers in helping businesses around the meet regulatory requirements, keep costs down, gain market access, and instill consumer confidence. SAE International, a standards development organization (SDO) critical to the transportation industry, works in partnership with industry to develop and distribute standards important in automotive and aerospace product development, product performance, and quality management. Historically, industry standards were formatted with the intention of being distributed in print. This changed with the evolution of new electronic formats, and now most standards are available in PDF or EPUB. While progressive at the time, these formats are now proving inadequate due their optimization for readability by the human eye versus consumption by electronic endpoints.
Journal Article

Digital Data Standards in Aircraft Asset Lifecycle: Current Status and Future Needs

2021-03-02
2021-01-0035
The aerospace ecosystem is a complex system of systems comprising of many stakeholders in exchanging technical, design, development, certification, operational, and maintenance data across the different lifecycle stages of an aircraft from concept, engineering, manufacturing, operations, and maintenance to its disposal. Many standards have been developed to standardize and improve the effectiveness, efficiency, and security of the data transfer processes in the aerospace ecosystem. There are still challenges in data transfer due to the lack of standards in certain areas and lack of awareness and implementation of some standards. G-31 standards committee of SAE International has conducted a study on the available digital data standards in aircraft asset life cycle to understand the current and future landscapes of the needed digital data standards and identify gaps. This technical paper presents the study conducted by the G-31 technical committee.
White Paper

Definitions for Terms Related to Shared Mobility and Enabling Technologies

2018-10-01
WP-0010
Increasingly, travelers are turning to shared mobility and enabling technologies (i.e., smartphone apps) to meet their mobility needs. A consequence of the ever-growing and ever-evolving landscape of shared mobility is the lack of standardized terms and definitions. The shared and digital mobility industry is challenged with discrepancies in use and definition of terms, which often create ambiguity and confusion for policymakers, regulatory agencies, and the broader public. In recognition of this challenge, the SAE Shared and Digital Mobility Committee embarked on the task of developing J3163™ – Taxonomy and Definitions for Terms Related to Shared Mobility and Enabling Technologies. This white paper provides an overview of the rationale, scope, key discussions held in the development of J3163TM, as well as guidance on how to use J3163TM.
X