Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Stability of a One Box Type Vehicle in a Cross-Wind-An Analysis of Transient Aerodynamic Forces and Moments

1988-10-01
881878
One-box type vehicles are especially liable to a loss of stability when entering a region of cross-wind. The reasons for this instability were investigated using scale models and by means of a mathematical simulation. Results indicated that yawing moment attains a peak at a precise position of the vehicle relative to the cross-wind. Visualization of the air flow and measurement of the pressure distributions established the cause of the phenomenon. Furthermore a study was conducted into the effects of body shape on stability and the efficacy of various modifications was assessed.
Technical Paper

Analysis of Sintered Silicon Nitride Grinding Damage

1993-03-01
930163
Sintered silicon nitride, particularly in structural ceramics, has superior properties such as low weight, heat resistance, wear resistance, etc. It is already being applied to automobile engine parts such as the swirl chamber and the turbine rotor. In recent years, the strength of silicon nitride has shown to be above 1000MPa. This has been achieved through advances in manufacturing technology such as materials powder, forming, sintering and so on. But the silicon nitride is easily damaged during grinding because it has less fracture toughness than metal. Consequently, the inherent strength of the material is not demonstrated in the actual products presently produced. It is assumed that the main cause of strength reduction is microcrack. In ordinary grinding methods, the length of microcrack has been estimated at approximately twenty micrometers by fracture mechanics analysis.
Technical Paper

Aerodynamic Effects of an Overtaking Articulated Heavy Goods Vehicle on Car-Trailer-An Analysis to Improve Controllability

1987-10-01
871919
It is well known and a common experience among drivers that controllability and stability of a car-trailer combination is affected when an articulated Heavy Goods Vehicle overtakes. In this paper, aerodynamic effects to a car-trailer combination when it is overtaken by an articulated HGV, have been analyzed experimentally using 1/20 scale models in wind tunnel, and a method to suppress this phenomenon has been investigated. The dynamic behaivor of a car-trailer combination is simulated by a simple mathematical model. The result shows that a car-trailer combination can be stable following the addittion of aerodynamic devices to each side of the vehicle. This simulated result is verified by the on-read test.
X