Refine Your Search

Topic

Author

Search Results

Technical Paper

Toxicologically Acceptable Levels of Methanol and Formaldehyde Emissions from Methanol-Fueled Vehicles

1984-10-01
841357
The increased interest in use of methanol makes it important to determine what levels of methanol and formaldehyde emissions may be acceptable. This paper reviews the available health data for methanol and formaldehyde to define what approximate ranges of concentrations, termed ranges of concern, could be acceptable from a toxicological viewpoint. Air quality models are then used to predict the in-use fleet average exhaust emission levels in localized situations (heavily impacted by mobile sources) corresponding to these ranges of concern. Using predicted fleet compositions, approximate target emission levels are given for the light-duty portion of the fleet which could yield these fleet averages. Finally, there is a brief summary of available methanol and formaldehyde emissions data from neat methanol-fueled vehicles which are compared to the target levels.
Technical Paper

Tier 2 Intermediate Useful Life (50,000 Miles) and 4000 Mile Supplemental Federal Test Procedure (SFTP) Exhaust Emission Results for a NOx Adsorber and Diesel Particle Filter Equipped Light-Duty Diesel Vehicle

2005-04-11
2005-01-1755
Due to its high efficiency and superior durability the diesel engine is again becoming a prime candidate for future light-duty vehicle applications within the United States. While in Europe the overall diesel share exceeds 40%, the current diesel share in the U.S. is 1%. Despite the current situation and the very stringent Tier 2 emission standards, efforts are being made to introduce the diesel engine back into the U.S. market. In order to succeed, these vehicles have to comply with emissions standards over a 120,000 miles distance while maintaining their excellent fuel economy. The availability of technologies such as high-pressure common-rail fuel systems, low sulfur diesel fuel, NOx adsorber catalysts (NAC), and diesel particle filters (DPFs) allow the development of powertrain systems that have the potential to comply with the light-duty Tier 2 emission requirements. In support of this, the U.S.
Technical Paper

The Environmental Implications of Manganese as an Alternate Antiknock

1975-02-01
750926
Methylcyclopentadienylmanganese tricarbonyl (MMT) while originally marketed in the late 50's and early 60's as a secondary antiknock to leaded fuels, is presently being marketed as a primary antiknock targeted for the EPA required lead-free gasoline grade tailored for use in catalyst-equipped vehicles. This paper reviews and discusses new information related to the effect of manganese gasoline additives on the performance of catalysts, regulated emissions, and several currently unregulated emissions. In addition, estimates of human exposures to automotive-generated manganese particulate and the toxicological characteristics of manganese are discussed as they related to an assessment of the potential public health consequences should manganese additives come into widespread use. EPA's position regarding the use of manganese additives is presented and discussed.
Technical Paper

The Effect of Diesel Sulfur Content and Oxidation Catalysts on Transient Emissions at High Altitude from a 1995 Detroit Diesel Series 50 Urban Bus Engine

1996-10-01
961974
Regulated emissions (THC, CO, NOx, and PM) and particulate SOF and sulfate fractions were determined for a 1995 Detroit Diesel Series 50 urban bus engine at varying fuel sulfur levels, with and without catalytic converters. When tested on EPA certification fuel without an oxidation catalyst this engine does not appear to meet the 1994 emissions standards for heavy duty trucks, when operating at high altitude. An ultra-low (5 ppm) sulfur diesel base stock with 23% aromatics and 42.4 cetane number was used to examine the effect of fuel sulfur. Sulfur was adjusted above the 5 ppm level to 50, 100, 200, 315 and 500 ppm using tert-butyl disulfide. Current EPA regulations limit the sulfur content to 500 ppm for on highway fuel. A low Pt diesel oxidation catalyst (DOC) was tested with all fuels and a high Pt diesel oxidation catalyst was tested with the 5 and 50 ppm sulfur fuels.
Journal Article

Teardown-Based Cost Assessment for Use in Setting Greenhouse Gas Emissions Standards

2012-04-16
2012-01-1343
The U.S. Environmental Protection Agency (EPA) contracted with FEV, Inc. to estimate the per-vehicle cost of employing selected advanced efficiency-improving technologies in light-duty motor vehicles. The development of transparent, reliable cost analyses that are accessible to all interested stakeholders has played a crucial role in establishing feasible and cost effective standards to improve fuel economy and reduce greenhouse gas (GHG) emissions. The FEV team, together with engineering staff from EPA's National Vehicle and Fuel Emissions Laboratory, and FEV's subcontractor, Munro & Associates, developed a robust costing methodology based on tearing down, to the piece part level, relevant systems, sub-systems, and assemblies from vehicles “with and without” the technologies being evaluated.
Technical Paper

Sulfuric Acid Emissions from Light Duty Vehicles

1976-02-01
760034
This paper discusses the systems used by the Office of Mobile Source Air Pollution Control of EPA to measure and analyze automotive sulfuric acid emissions. This system involves mixing the entire vehicle exhaust with dilution air in a dilution tunnel. Sulfuric acid samples are collected by passing a small portion of the dilute exhaust through Fluoropore filters. The sulfuric acid content of the filters is determined by an automated barium chloranilate method. This paper also discusses test results from a number of advanced prototype vehicles including two stratified charge cars, a Dresser carburetor vehicle, three dual catalyst cars, and a 3-way catalyst car.
Technical Paper

Resistive Materials Applied to Quick Light-off Catalysts

1989-02-01
890799
The application of resistive materials as part of an exhaust emission control system is presented and discussed. The importance of cold start emissions is emphasized, and results are presented from experiments conducted with two different conductive materials. Most of the testing was conducted using methanol as the fuel, although some tests were run using gasoline-fueled vehicles.
Technical Paper

Recommended I/M Short Test Procedures for the 1990's: Six Alternatives

1991-02-01
910338
This report describes in detail new test procedures designed to minimize test variability, and the resulting false failures of new technology vehicles. There are currently six promulgated test procedures. The new procedures differ from the current ones in that they include controlled preconditioning, second chance testing, and sampling and score selecting algorithms. These are intended to minimize the variability in testing conditions and thereby reduce false failures of clean vehicles. High emitting vehicles which have been escaping detection with the current test procedures may continue to do so under the new ones. It is EPA's hope that these new procedures will improve the possibility of using more stringent cutpoints and non-idle test modes in the future to detect these high emitters by eliminating the additional false failures that would otherwise occur by instituting such measures under current procedures.
Technical Paper

Portable Emissions Measurement for Retrofit Applications – The Beijing Bus Retrofit Experience

2008-06-23
2008-01-1825
In 2005, the United States Environmental Protection Agency (EPA) and Southwest Research Institute (SwRI) embarked on a mission to help the city of Beijing, China, clean its air. Working with the Beijing Environmental Protection Bureau (BEPB), the effort was a pilot diesel retrofit demonstration program involving three basic retrofit technologies to reduce particulate matter (PM). The three basic technologies were the diesel oxidation catalyst (DOC), the flowthrough diesel particulate filter (FT-DPF), and the wallflow diesel particulate filter (WF-DPF). The specific retrofit systems selected for the project were verified through the California Air Resources Board (CARB) or the EPA verification protocol [1]. These technologies are generally verified for PM reductions of 20-40 percent for DOCs, 40-50 percent for the FT-DPF, and 85 percent or more for the high efficiency WF-DPF.
Technical Paper

Performance of Partial Flow Sampling Systems Relative to Full Flow CVS for Determination of Particulate Emissions under Steady-State and Transient Diesel Engine Operation

2002-05-06
2002-01-1718
The use of a partial flow sampling system (PFSS) to measure nonroad steady-state diesel engine particulate matter (PM) emissions is a technique for certification approved by a number of regulatory agencies around the world including the US EPA. Recently, there have been proposals to change future nonroad tests to include testing over a nonroad transient cycle. PFSS units that can quantify PM over the transient cycle have also been discussed. The full flow constant volume sampling (CVS) technique has been the standard method for collecting PM under transient engine operation. It is expensive and requires large facilities as compared to a typical PFSS. Despite the need for a cheaper alternative to the CVS, there has been a concern regarding how well the PM measured using a PFSS compared to that measured by the CVS. In this study, three PFSS units, including AVL SPC, Horiba MDLT, and Sierra BG-2 were investigated in parallel with a full flow CVS.
Technical Paper

Operating Characteristics of Zirconia Galvanic Cells (Lambda Sensors) in Automotive Closed-Loop Emission Control Systems

1992-02-01
920289
Simple tests were performed to investigate the operating characteristics of zirconia galvanic cells (lambda sensors) in automotive closed loop “three-way” emission control systems. Commercially available cells were exposed to typical gaseous components of exhaust gas mixtures. The voltages generated by the cells were at their maximum values when hydrogen, and, in some instances, carbon monoxide, was available for reaction with atmospheric oxygen that migrated through the cells' ceramic thimbles in ionic form. This dependence of galvanic activity on the availability of these particular reducing agents indicated that the cells were voltaic devices which operated as oxidation/reduction reaction cells, rather than simple oxygen concentration cells.
Technical Paper

On-road Testing and Characterization of Fuel Economy of Light-Duty Vehicles

2005-04-11
2005-01-0677
The potential discrepancy between the fuel economy shown on new vehicle labels and that achieved by consumers has been receiving increased attention of late. EPA has not modified its labeling procedures since 1985. It is likely possible that driving patterns in the U.S. have changed since that time. One possible modification to the labeling procedures is to incorporate the fuel economy measured over the emission certification tests not currently used in deriving the fuel economy label (i.e., the US06 high speed and aggressive driving test, the SC03 air conditioning test and the cold temperature test). This paper focuses on the US06 cycle and the possible incorporation of aggressive driving into the fuel economy label. As part of its development of the successor to the MOBILE emissions model, the Motor Vehicle Emission Modeling System (MOVES), EPA has developed a physically-based model of emissions and fuel consumption which accounts for different driving patterns.
Technical Paper

Nonroad Engine Activity Analysis and Transient Cycle Generation

1999-09-14
1999-01-2800
The United States Environmental Protection Agency (EPA) has initiated Phase I of a regulatory program to control exhaust emissions of nonroad diesel engines over 37 kW. Central to any emissions regulation is the test procedure, which must include an appropriate test cycle. Based on actual in-use speed and estimated torque data collected from an agricultural tractor, a backhoe-loader, and a crawler tractor, three duty cycles were developed. Using an iterative process, comparison of chi-square statistical data was used to identify representative microtrips, segments of engine operation gathered during performance of selected activities. Representative microtrips for specific activities for a particular nonroad application were “strung” together to make up a test cycle. Before accepting the test cycle, data for the cycle was compared to statistical data used to characterize the raw data in an effort to validate that the cycle was representative of the raw data.
Journal Article

Modeling and Validation of 48V Mild Hybrid Lithium-Ion Battery Pack

2018-04-03
2018-01-0433
As part of the midterm evaluation of the 2022-2025 Light-Duty Vehicle Greenhouse Gas (GHG) Standards, the U.S. Environmental Protection Agency (EPA) developed simulation models for studying the effectiveness of 48V mild hybrid electric vehicle (MHEV) technology for reducing CO2 emissions from light-duty vehicles. Simulation and modeling of this technology requires a suitable model of the battery. This article presents the development and validation of a 48V lithium-ion battery model that will be integrated into EPA’s Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) vehicle simulation model and that can also be used within Gamma Technologies, LLC (Westmont, IL) GT-DRIVE™ vehicle simulations. The battery model is a standard equivalent circuit model with the two-time constant resistance-capacitance (RC) blocks.
Technical Paper

Modeling and Controls Development of 48 V Mild Hybrid Electric Vehicles

2018-04-03
2018-01-0413
The Advanced Light-Duty Powertrain and Hybrid Analysis tool (ALPHA) was created by EPA to evaluate the Greenhouse Gas (GHG) emissions of Light-Duty (LD) vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulator capable of analyzing various vehicle types combined with different powertrain technologies. The ALPHA desktop application was developed using MATLAB/Simulink. The ALPHA tool was used to evaluate technology effectiveness and off-cycle technologies such as air-conditioning, electrical load reduction technology and road load reduction technologies of conventional, non-hybrid vehicles for the Midterm Evaluation of the 2017-2025 LD GHG rule by the U.S. Environmental Protection Agency (EPA) Office of Transportation and Air Quality (OTAQ).
Technical Paper

Light Duty Automotive Trends Through 1986

1986-04-01
860366
This, the fourteenth in this series of papers, examines trends in fuel economy, technology usage and estimated 0 to 60 MPH acceleration time for model year 1986 passenger cars. Comparisons with previous year's data are made for the fleet as a whole and using three measures of vehicle/engine size: number of cylinders, EPA car class, and inertia weight class. Emphasis on vehicle performance and fuel metering has been expanded and analysis of individual manufacturers has been deemphasized; comparisons of the Domestic, European, and Japanese market sectors are given increased emphasis.
Technical Paper

Light Duty Automotive Fuel Economy …Trends through 1981

1981-02-01
810386
EPA new-model fuel economy figures are presented for passenger vehicles and light duty trucks (those with GVW ratings up to 8500 lbs). The 1981 models are emphasized, with some comparisons to prior years included. Reader familiarity with the EPA tests, data bases, and analytical methods is assumed. Principal two-way analyses include comparisons of domestic vs. import, gasoline vs. Diesel, and Federal (49-state) vs. California vehicles. Sales fractions for a number of vehicle and engine emission control design features are included. The principal finding is that increased use of newer vehicle and emission control technologies in 1981 has accompanied significant fuel economy gains in spite of the tougher 1981 emission standards.
Technical Paper

Light Duty Automotive Fuel Economy … Trends thru 1985

1985-05-01
850550
This, the thirteenth in a series of papers on trends in EPA fuel economy, covers both passenger cars and light trucks and concentrates on the current model year, 1985. It differs from previous papers in two ways: 1) Model years 1975, 1980 and 1985 are highlighted, with the model years in between these rarely discussed; 2) The progress of the industry, as a whole, in improving fuel economy since 1975 is emphasized, and individual manufacturer data are de-emphasized. Conclusions are presented on the trends in fuel economy of the car and light truck fleets; the Domestic, European and Japanese market sectors; and various vehicle classes.
Technical Paper

Life-cycle Management in the Automotive Supply Chain: Results of a Survey of Saturn Tier I Suppliers

2000-04-26
2000-01-1463
Saturn Corporation and its suppliers are partnering with the U.S. Environmental Protection Agency (EPA) Design for the Environment (DfE) Program and the University of Tennessee (UT) Center for Clean Products and Clean Technologies (CCPCT) in a project to develop a model for life-cycle management (LCM). This paper presents key findings from the first phase of the project, a survey by Saturn of its suppliers to determine their interests and needs for a supply chain LCM project, and identifies framework strategies for successful LCM.
Technical Paper

Investigation into the Vehicle Exhaust Emissions of High Percentage Ethanol Blends

1995-02-01
950777
Six in-use vehicles were tested on a baseline gasoline and nine gasoline/ethanol blends to determine the effect of ethanol content in fuels on automotive exhaust emissions and fuel economy. The baseline gasoline was representative of average summer gasoline and served as the base from which the other fuels were blended. For the majority of the vehicles, total hydrocarbon, and carbon monoxide exhaust emissions as well as fuel economy decreased while NOx and acetaldehyde exhaust emissions increased as the ethanol content in the test fuel increased. Formaldehyde and carbon dioxide emissions were relatively unaffected by the addition of ethanol. The emission responses to the increased fuel oxygen levels were consistent with what would be expected from leaning-out the air/fuel ratio for a spark ignition engine. The results are shown graphically and a linear regression is performed utilizing the method of least squares to investigate statistically significant trends in the data.
X