Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

The Influence of Surrogate Blood Vessels on the Impact Response of a Physical Model of the Brain

2004-11-01
2004-22-0012
Cerebral blood vessels are an integral part of the brain and may play a role in the response of the brain to impact. The purpose of this study was to quantify the effects of surrogate vessels on the deformation patterns of a physical model of the brain under various impact conditions. Silicone gel and tubing were used as surrogates for brain tissue and blood vessels, respectively. Two aluminum cylinders representing a coronal section of the brain were constructed. One cylinder was filled with silicone gel only, and the other was filled with silicone gel and silicone tubing arranged in the radial direction in the peripheral region. An array of markers was embedded in the gel in both cylinders to facilitate strain calculation via high-speed video analysis. Both cylinders were simultaneously subjected to a combination of linear and angular acceleration using a two-segment pendulum.
Technical Paper

Testing and Modeling the Responses of Hybrid III Crash-Dummy Lower Extremity under High-speed Vertical Loading

2015-11-09
2015-22-0018
Anthropometric test devices (ATDs), such as the Hybrid III crash-test dummy, have been used to simulate lower-extremity responses to military personnel subjected to loading conditions from anti-vehicular (AV) landmine blasts. Numerical simulations [e.g., finite element (FE) analysis] of such high-speed vertical loading on ATD parts require accurate material parameters that are dependent on strain rate. This study presents a combined experimental and computational study to calibrate the rate-dependent properties of three materials on the lower extremities of the Hybrid III dummy. The three materials are heel-pad foam, foot skin, and lower-leg flesh, and each has properties that can affect simulation results of forces and moments transferred to the lower extremities.
Technical Paper

Structural Response of Lower Leg Muscles in Compression: A Low Impact Energy Study Employing Volunteers, Cadavers and the Hybrid III

2002-11-11
2002-22-0012
Little has been reported in the literature on the compressive properties of muscle. These data are needed for the development of finite element models that address impact of the muscles, especially in the study of pedestrian impact. Tests were conducted to characterize the compressive response of muscle. Volunteers, cadaveric specimens and a Hybrid III dummy were impacted in the posterior and lateral aspect of the lower leg using a free flying pendulum. Volunteer muscles were tested while tensed and relaxed. The effects of muscle tension were found to influence results, especially in posterior leg impacts. Cadaveric response was found to be similar to that of the relaxed volunteer. The resulting data can be used to identify a material law using an inverse method.
Technical Paper

Reconstruction of Pediatric Occupant Kinematic Responses Using Finite Element Method in a Real-World Lateral Impact

2017-03-28
2017-01-1462
Computational human body models, especially detailed finite element models are suitable for investigation of human body kinematic responses and injury mechanism. A real-world lateral vehicle-tree impact accident was reconstructed by using finite element method according to the accident description in the CIREN database. At first, a baseline vehicle FE model was modified and validated according to the NCAP lateral impact test. The interaction between the car and the tree in the accident was simulated using LS-Dyna software. Parameters that affect the simulation results, such as the initial pre-crash speed, impact direction, and the initial impact location on the vehicle, were analyzed. The parameters were determined by matching the simulated vehicle body deformations and kinematics to the accident reports.
Technical Paper

Recent Advances in Brain Injury Research: A New Human Head Model Development and Validation

2001-11-01
2001-22-0017
Many finite element models have been developed by several research groups in order to achieve a better understanding of brain injury. Due to the lack of experimental data, validation of these models has generally been limited. Consequently, applying these models to investigate brain responses has also been limited. Over the last several years, several versions of the Wayne State University brain injury model (WSUBIM) were developed. However, none of these models is capable of simulating indirect impacts with an angular acceleration higher than 8,000 rad/s2. Additionally, the density and quality of the mesh in the regions of interest are not detailed and sensitive enough to accurately predict the stress/strain level associated with a wide range of impact severities. In this study, WSUBIM version 2001, capable of simulating direct and indirect impacts with a combined translational and rotational acceleration of the head up to 200 g and 12,000 rad/s2 has been developed.
Technical Paper

On the Role of Cervical Facet Joints in Rear End Impact Neck Injury Mechanisms

1997-02-24
970497
After a rear end impact, various clinical symptoms are often seen in car occupants (e.g. neck stiffness, strain, headache). Although many different injury mechanisms of the cervical spine have been identified thus far, the extent to which a single mechanism of injury is responsible remains uncertain. Apart from hyperextension or excessive shearing, a compression of the cervical spine can also be seen in the first phase of the impact due to ramping or other mechanical interactions between the seat back and the spine. It is hypothesized that this axial compression, together with the shear force, are responsible for the higher observed frequency of neck injuries in rear end impacts versus frontal impacts of comparable severity. The axial compression first causes loosening of cervical ligaments making it easier for shear type soft tissue injuries to occur.
Technical Paper

Numerical Investigations of Interactions between the Knee-Thigh-Hip Complex with Vehicle Interior Structures

2005-11-09
2005-22-0005
Although biomechanical studies on the knee-thigh-hip (KTH) complex have been extensive, interactions between the KTH and various vehicular interior design parameters in frontal automotive crashes for newer models have not been reported in the open literature to the best of our knowledge. A 3D finite element (FE) model of a 50th percentile male KTH complex, which includes explicit representations of the iliac wing, acetabulum, pubic rami, sacrum, articular cartilage, femoral head, femoral neck, femoral condyles, patella, and patella tendon, has been developed to simulate injuries such as fracture of the patella, femoral neck, acetabulum, and pubic rami of the KTH complex. Model results compared favorably against regional component test data including a three-point bending test of the femur, axial loading of the isolated knee-patella, axial loading of the KTH complex, axial loading of the femoral head, and lateral loading of the isolated pelvis.
Technical Paper

Motion Analysis of the Mandible during Low-Speed, Rear-End Impacts using High-Speed X-rays

2005-11-09
2005-22-0004
There has been much debate over “whiplash”-induced temporomandibular joint (TMJ) dysfunction following low-speed, rear-end automobile collisions. While several authors have reported TMJ injury based on case studies post collision, there has been little biomechanical evidence showing that rear-end impact was the primary cause of such injury. The purpose of this study was to measure the relative translation between the upper and lower incisors in cadavers subjected to low-speed, rear-end impacts. High-speed x-ray images used for this analysis were reported previously for the analysis of cadaveric cervical spine kinematics during low-speed, rear-end impacts. The cadavers were positioned at various seatback angles and body postures, producing an overall picture of various seating scenarios.
Technical Paper

Mechanisms of Traumatic Rupture of the Aorta and Associated Peri-isthmic Motion and Deformation

2008-11-03
2008-22-0010
This study investigated the mechanisms of traumatic rupture of the aorta (TRA). Eight unembalmed human cadavers were tested using various dynamic blunt loading modes. Impacts were conducted using a 32-kg impactor with a 152-mm face, and high-speed seatbelt pretensioners. High-speed biplane x-ray was used to visualize aortic motion within the mediastinum, and to measure deformation of the aorta. An axillary thoracotomy approach was used to access the peri-isthmic region to place radiopaque markers on the aorta. The cadavers were inverted for testing. Clinically relevant TRA was observed in seven of the tests. Peak average longitudinal Lagrange strain was 0.644, with the average peak for all tests being 0.208 ± 0.216. Peak intraluminal pressure of 165 kPa was recorded. Longitudinal stretch of the aorta was found to be a principal component of injury causation. Stretch of the aorta was generated by thoracic deformation, which is required for injury to occur.
Technical Paper

Mechanical Properties of the Cadaveric and Hybrid III Lumbar Spines

1998-11-02
983160
This study identified the mechanical properties of ten cadaveric lumbar spines and two Hybrid III lumbar spines. Eight tests were performed on each specimen: tension, compression, anterior shear, posterior shear, left lateral shear, flexion, extension and left lateral bending. Each test was run at a displacement rate of 100 mm/sec. The maximum displacements were selected to approximate the loading range of a 50 km/h Hybrid III dummy sled test and to be non-destructive to the specimens. Load, linear displacement and angular displacement data were collected. Bending moment was calculated from force data. Each mode of loading demonstrated consistent characteristics. The load-displacement curves of the Hybrid III lumbar spine demonstrated an initial region of high stiffness followed by a region of constant stiffness.
Technical Paper

Mechanical Characterization of Porcine Abdominal Organs

2002-11-11
2002-22-0003
Typical automotive related abdominal injuries occur due to contact with the rim of the steering wheel, seatbelt and armrest, however, the rate is less than in other body regions. When solid abdominal organs, such as the liver, kidneys and spleen are involved, the injury severity tends to be higher. Although sled and pendulum impact tests have been conducted using cadavers and animals, the mechanical properties and the tissue level injury tolerance of abdominal solid organs are not well characterized. These data are needed in the development of computer models, the improvement of current anthropometric test devices and the enhancement of our understanding of abdominal injury mechanisms. In this study, a series of experimental tests on solid abdominal organs was conducted using porcine liver, kidney and spleen specimens. Additionally, the injury tolerance of the solid organs was deduced from the experimental data.
Technical Paper

Mathematical Modeling of the Hybrid III Dummy Chest with Chest Foam

1991-10-01
912892
A nonlinear foam was added to a previously created three-dimensional finite element model of the Hybrid III dummy chest which consisted of six steel ribs, rib damping material, the sternum, a spine box and a pendulum. Two standard calibration pendulum impact tests for a Hybrid III dummy chest were used to validate the new model. An explicit finite element analysis code PAM-CRASH was utilized to simulate the dynamic process. At impact velocities of 6.7 m/s and 4.3 m/s, the force and deflection time history as well as the force-deflection plots showed good agreement between model predictions and calibration data. Peak strains also agreed well with experimental data.
Technical Paper

Lower Limb: Advanced FE Model and New Experimental Data

2001-11-01
2001-22-0022
The Lower Limb Model for Safety (LLMS) is a finite element model of the lower limb developed mainly for safety applications. It is based on a detailed description of the lower limb anatomy derived from CT and MRI scans collected on a subject close to a 50th percentile male. The main anatomical structures from ankle to hip (excluding the hip) were all modeled with deformable elements. The modeling of the foot and ankle region was based on a previous model Beillas et al. (1999) that has been modified. The global validation of the LLMS focused on the response of the isolated lower leg to axial loading, the response of the isolated knee to frontal and lateral impact, and the interaction of the whole model with a Hybrid III model in a sled environment, for a total of nine different set-ups. In order to better characterize the axial behavior of the lower leg, experiments conducted on cadaveric tibia and foot were reanalyzed and experimental corridors were proposed.
Technical Paper

Kinematics of Human Cadaver Cervical Spine During Low Speed Rear-End Impacts

2000-11-01
2000-01-SC13
The purposes of this study were to measure the relative linear and angular displacements of each pair of adjacent cervical vertebrae and to compute changes in distance between two adjacent facet joint landmarks during low posterior- anterior (+Gx) acceleration without significant hyperextension of the head. A total of twenty-six low speed rear-end impacts were conducted using six postmortem human specimens. Each cadaver was instrumented with two to three neck targets embedded in each cervical vertebra and nine accelerometers on the head. Sequential x-ray images were collected and analyzed. Two seatback orientations were studied. In the global coordinate system, the head, the cervical vertebrae, and the first or second thoracic vertebra (T1 or T2) were in extension during rear-end impacts. The head showed less extension in comparison with the cervical spine.
Technical Paper

Investigation of Upper Body and Cervical Spine Kinematics of Post Mortem Human Subjects (PMHS) during Low-Speed, Rear-End Impacts

2009-04-20
2009-01-0387
A total of eight low-speed, rear-end impact tests using two Post Mortem Human Subjects (PMHS) in a seated posture are reported. These tests were conducted using a HYGE-style mini-sled. Two test conditions were employed: 8 kph without a headrestraint or 16 kph with a headrestraint. Upper-body kinematics were captured for each test using a combination of transducers and high-speed video. A 3-2-2-2-accelerometer package was used to measure the generalized 3D kinematics of both the head and pelvis. An angular rate sensor and two single-axis linear accelerometers were used to measure angular speed, angular acceleration, and linear acceleration of T1 in the sagittal plane. Two high-speed video cameras were used to track targets rigidly attached to the head, T1, and pelvis. The cervical spine kinematics were captured with a high-speed, biplane x-ray system by tracking radiopaque markers implanted into each cervical vertebra.
Technical Paper

Investigation of Head Injury Mechanisms Using Neutral Density Technology and High-Speed Biplanar X-ray

2001-11-01
2001-22-0016
The principal focus of this study was the measurement of relative brain motion with respect to the skull using a high-speed, biplanar x-ray system and neutral density targets (NDTs). A suspension fixture was used for testing of inverted, perfused, human cadaver heads. Each specimen was subjected to multiple tests, either struck at rest using a 152-mm-diameter padded impactor face, or stopped against an angled surface from steady-state motion. The impacts were to the frontal and occipital regions. An array of multiple NDTs was implanted in a double-column scheme of 5 and 6 targets, with 10 mm between targets in each column and 80 mm between columns. These columns were implanted in the temporoparietal and occipitoparietal regions. The impacts produced peak resultant accelerations of 10 to 150 g, and peak angular accelerations between 1000 and 8000 rad/s2. For all but one test, the peak angular speeds ranged from 17 to 22 rad/s.
Technical Paper

High-Speed Seatbelt Pretensioner Loading of the Abdomen

2006-11-06
2006-22-0002
This study characterizes the response of the human cadaver abdomen to high-speed seatbelt loading using pyrotechnic pretensioners. A test apparatus was developed to deliver symmetric loading to the abdomen using a seatbelt equipped with two low-mass load cells. Eight subjects were tested under worst-case scenario, out-of-position (OOP) conditions. A seatbelt was placed at the level of mid-umbilicus and drawn back along the sides of the specimens, which were seated upright using a fixed-back configuration. Penetration was measured by a laser, which tracked the anterior aspect of the abdomen, and by high-speed video. Additionally, aortic pressure was monitored. Three different pretensioner designs were used, referred to as system A, system B and system C. The B and C systems employed single pretensioners. The A system consisted of two B system pretensioners. The vascular systems of the subjects were perfused.
Technical Paper

High Rate Mechanical Properties of the Hybrid Iii and Cadaveric Lumbar Spines in Flexion and Extension

1999-10-10
99SC18
In a previous study by Demetropoules et al., (1998), it was shown that both cadaveric and Hybrid III lumbar spines exhibit loading rate dependency when loaded in a quasi-static mode up to a velocity of 100 mm/s. In these tests, the Hybrid III lumbar spines were generally found to have higher stiffnesses than the human lumbar spines, except in compression. This is probably due to the fact that muscle loading was not simulated when testing the human spines. Additionally, the speed previously used to test the spines was less than that typically seen in automotive crash environment. The purpose of this study was to use a high-rate testing machine to establish the flexion and extension stiffnesses of the human lumbar spine with simulated extensor muscle tone. Two Hybrid III lumbar spines were used to develop the test methodology and to obtain the response of the Hybrid III lumbar spines.
Technical Paper

Foot and Ankle Finite Element Modeling Using Ct-Scan Data

1999-10-10
99SC11
Although not life threatening in most cases, victims of lower extremity injuries frequently end up living with a poor quality of life. The implementations of airbag supplement restraint systems significantly reduce the incidence of head and chest injuries. However, the frequency of leg injuries remains high. Several finite element models of the foot and ankle have been developed to further the understanding of this injury mechanism. None of those models employed accurate geometry among various bony segments. The objective of this study is to develop a foot and ankle finite element model based on CT scan data so that joint geometry can be accurately represented. The model was validated against experimental data for several different configurations including typical car crash situations.
Technical Paper

Finite Element Modeling of Hybrid III Head-Neck Complex

1992-11-01
922526
A three-dimensional finite element model of the Hybrid III dummy head-neck complex was created to simulate the Amended Part 572 Head-Neck Pendulum Compliance Test, of the Code of Federal Regulations. The model consisted of a rigid head and five circular aluminum disks joined together by butyl elastomer rubber. Contact surfaces were defined to allow the anterior neck to separate upon an application of extension moments. Two mounting positions, one for flexion and the other one for extension, were used to simulate the head-neck calibration tests. An explicit finite element code PAM-CRASH was utilized to simulate the model dynamic responses. Simulation results were compared to experimental data obtained from First Technology Safety Systems Inc. Model predictions agreed well in both flexion and extension. This model can be used to study the head-neck biomechanics of the existing dummy as well as in the development of new dummies.
X