Refine Your Search

Topic

Search Results

Journal Article

Tomorrows Diesel Fuel Diversity - Challenges and Solutions

2008-06-23
2008-01-1731
Regulated emissions, CO2-values, comfort, good driveability, high reliability and costs, this is the main frame for all future powertrain developments. In this frame, the diesel powertrain, not only for passenger cars, but also for commercial vehicle applications, faces some challenges in order to fulfil the future European and current US emission legislations while keeping the fuel consumption benefit, good driveability and an acceptable cost frame. One of these challenges is the varying fuel qualities of diesel fuel in different countries including different cetane number, volatility, sulphur content and different molecular composition. In addition to that in the future, more and more alternative fuels with various fuel qualities and properties will be launched into the market for economical and environmental reasons. At present, the control algorithms of the injection system applied in most diesel engines is open loop control.
Technical Paper

Tier 2 Intermediate Useful Life (50,000 Miles) and 4000 Mile Supplemental Federal Test Procedure (SFTP) Exhaust Emission Results for a NOx Adsorber and Diesel Particle Filter Equipped Light-Duty Diesel Vehicle

2005-04-11
2005-01-1755
Due to its high efficiency and superior durability the diesel engine is again becoming a prime candidate for future light-duty vehicle applications within the United States. While in Europe the overall diesel share exceeds 40%, the current diesel share in the U.S. is 1%. Despite the current situation and the very stringent Tier 2 emission standards, efforts are being made to introduce the diesel engine back into the U.S. market. In order to succeed, these vehicles have to comply with emissions standards over a 120,000 miles distance while maintaining their excellent fuel economy. The availability of technologies such as high-pressure common-rail fuel systems, low sulfur diesel fuel, NOx adsorber catalysts (NAC), and diesel particle filters (DPFs) allow the development of powertrain systems that have the potential to comply with the light-duty Tier 2 emission requirements. In support of this, the U.S.
Technical Paper

The Impact of Different Biofuel Components in Diesel Blends on Engine Efficiency and Emission Performance

2010-10-25
2010-01-2119
Within the Cluster of Excellence “Tailor-Made Fuels from Biomass” at RWTH Aachen University, the Institute for Combustion Engines carried out an investigation program to explore the potential of future biofuel components in Diesel blends. In this paper, thermodynamic single cylinder engine results of today's and future biofuel components are presented with respect to their engine-out emissions and engine efficiency. The investigations were divided into two phases: In the first phase, investigations were performed with rapeseed oil methyl ester (B100) and an Ethanol-Gasoline blend (E85). In order to analyze the impact of different fuel blends, mixtures with 10 vol-% of B100 or E85 and 90 vol-% of standardized EN590 Diesel were investigated. Due to the low cetane number of E85, it cannot be used purely in a Diesel engine.
Technical Paper

Tailor-Made Fuels: The Potential of Oxygen Content in Fuels for Advanced Diesel Combustion Systems

2009-11-02
2009-01-2765
Fuels derived from biomass will most likely contain oxygen due to the high amount of hydrogen needed to remove oxygen in the production process. Today, alcohol fuels (e. g. ethanol) are well understood for spark ignition engines. The Institute for Combustion Engines at RWTH Aachen University carried out a fuel investigation program to explore the potential of alcohol fuels as candidates for future compression ignition engines to reduce engine-out emissions while maintaining engine efficiency and an acceptable noise level. The soot formation and oxidation process when using alcohol fuels in diesel engines is not yet sufficiently understood. Depending on the chain length, alcohol fuels vary in cetane number and boiling temperature. Decanol possesses a diesel-like cetane number and a boiling point in the range of the diesel boiling curve. Thus, decanol was selected as an alcohol representative to investigate the influence of the oxygen content of an alcohol on the combustion performance.
Technical Paper

Tailor-Made Fuels from Biomass: Influence of Molecular Structures on the Exhaust Gas Emissions of Compression Ignition Engines

2013-10-07
2013-36-0571
In order to deeply investigate and improve the complete path from biofuel production to combustion, the cluster of excellence “Tailor-Made Fuels from Biomass” was installed at RWTH Aachen University in 2007. Recently, new pathways have been discovered to synthesize octanol [1] and di-n-butylether (DNBE). These molecules are identical in the number of included hydrogen, oxygen and carbon atoms, but differ in the molecular structure: for octanol, the oxygen atom is at the end of the molecule, whereas for DNBE it is located in the middle. In this paper the utilization of octanol and DNBE in a state-of-the-art single cylinder diesel research engine will be discussed. The major interest has been on engine emissions (NOx, PM, HC, CO, noise) compared to conventional diesel fuel.
Technical Paper

Tailor-Made Fuels for Future Advanced Diesel Combustion Engines

2009-06-15
2009-01-1811
The finite nature and instability of fossil fuel supply has led to an increasing and enduring investigation demand of alternative and regenerative fuels. The Institute for Combustion Engines at the RWTH Aachen University carried out an investigation program to explore the potential of tailor made fuels to reduce engine-out emissions while maintaining engine efficiency and an acceptable noise level. To enable optimum engine performance a range of different hydrocarbons having different fuel properties like cetane number, boiling temperature and different molecular compositions have been investigated. Paraffines and naphthenes were selected in order to better understand the effects of molecular composition and chain length on emissions and performance of an engine that was already optimized for advanced combustion performance. The diesel single-cylinder research engine used in this study will be used to meet Euro 6 emissions limits and beyond.
Technical Paper

Potential of Synthetic Fuels in Future Combustion Systems for HSDI Diesel Engines

2006-04-03
2006-01-0232
In view of limited crude oil resources, alternative fuels for internal combustion engines are currently being intensively researched. Synthetic fuels from natural gas offer a promising interim option before the development of CO2-neutral fuels. Up to a certain degree, these fuels can be tailored to the demands of modern engines, thus allowing a concurrent optimization of both the engine and the fuel. This paper summarizes investigations of a Gas-To-Liquid (GTL) diesel fuel in a modern, post-EURO 4 compliant diesel engine. The focus of the investigations was on power output, emissions performance and fuel economy, as well as acoustic performance, in comparison to a commercial EU diesel fuel. The engine investigations were accompanied by injection laboratory studies in order to assist in the performance analyses.
Journal Article

Potential of Cellulose-Derived Biofuels for Soot Free Diesel Combustion

2010-04-12
2010-01-0335
Today's biofuels require large amounts of energy in the production process for the conversion from biomass into fuels with conventional properties. To reduce the amounts of energy needed, future fuels derived from biomass will have a molecular structure which is more similar to the respective feedstock. Butyl levulinate can be gained easily from levulinic acid which is produced by acid hydrolysis of cellulose. Thus, the Institute for Combustion Engines at RWTH Aachen University carried out a fuel investigation program to explore the potential of this biofuel compound, as a candidate for future compression ignition engines to reduce engine-out emissions while maintaining engine efficiency and an acceptable noise level. Previous investigations identified most desirable fuel properties like a reduced cetane number, an increased amount of oxygen content and a low boiling temperature for compression ignition engine conditions.
Technical Paper

Performance and Emissions of Lignin and Cellulose Based Oxygenated Fuels in a Compression-Ignition Engine

2015-04-14
2015-01-0910
Lignocellulosic biomass consists of (hemi-) cellulose and lignin. Accordingly, an integrated biorefinery will seek to valorize both streams into higher value fuels and chemicals. To this end, this study evaluated the overall combustion performance of both cellulose- and lignin derivatives, namely the high cetane number (CN) di-n-butyl ether (DnBE) and low CN anisole, respectively. Said compounds were blended both separately and together with EN590 diesel. Experiments were conducted in a single cylinder compression ignition engine, which has been optimized for improved combustion characteristics with respect to low emission levels and at the same time high fuel efficiency. The selected operating conditions have been adopted from previous “Tailor-Made Fuels from Biomass (TMFB)” work.
Technical Paper

Optimization of Diesel Combustion and Emissions with Newly Derived Biogenic Alcohols

2013-10-14
2013-01-2690
Modern biofuels offer the potential to decrease engine out emissions while at the same time contributing to a reduction of greenhouse gases produced from individual mobility. In order to deeply investigate and improve the complete path from biofuel production to combustion, in 2007 the cluster of excellence “Tailor-Made Fuels from Biomass” was installed at RWTH Aachen University. Since then, a whole variety of possible fuel candidates have been identified and investigated. In particular oxygenated fuels (e.g. alcohols, furans) have proven to be beneficial regarding the particulate matter (PM)/ NOx trade-off [1, 2, 3] in diesel-type combustion. Alcohols that provide a longer ignition delay than diesel might behave even better with regard to this trade-off due to higher homogenization of the mixture. Recent studies carried out within the Cluster of Excellence have discovered new pathways to derive 1-octanol from biomass [4], which features a derived cetane number (DCN) of 39.
Journal Article

Optical and Thermodynamic Investigations of Reference Fuels for Future Combustion Systems

2010-10-25
2010-01-2193
The finite nature and instability of fossil fuel supply has led to an increasing and enduring investigation demand of alternative and regenerative fuels. An investigation program is carried out to explore the potential of tailor made fuels to reduce engine-out emissions while maintaining engine efficiency and an acceptable noise level. In this paper, fundamental results of the Diesel engine relevant combustion are presented. To enable optimum engine performance a range of different reference fuels have been investigated. The fundamental effects of different physical and chemical properties on emission formation and engine performance are investigated using a thermodynamic diesel single cylinder research engine and an optically-accessible combustion vessel. Depending on the chain length and molecular structure, fuel compounds vary in cetane number, boiling temperature etc. Therefore, different hydrocarbons including n-heptane, n-dodecane, and l-decanol were investigated.
Technical Paper

Optical Spray Investigations on OME3-5 in a Constant Volume High Pressure Chamber

2019-10-07
2019-24-0234
Oxygenated fuels such as polyoxymethylene dimethyl ethers (OME) offer a chance to significantly decrease emissions while switching to renewable fuels. However, compared to conventional diesel fuel, they have lower heating values and different evaporation behaviors which lead to differences in spray, mixture formation as well as ignition delay. In order to determine the mixture formation characteristics and the combustion behavior of neat OME3-5, optical investigations have been carried out in a high-pressure-chamber using shadowgraphy, mie-scatterlight and OH-radiation recordings. Liquid penetration length, gaseous penetration length, lift off length, spray cone angle and ignition delay have been determined and compared to those measured with diesel-fuel over a variety of pressures, temperatures, rail pressures and injection durations.
Technical Paper

Novel Approach to Integration of Turbocompounding, Electrification and Supercharging Through Use of Planetary Gear System

2018-04-03
2018-01-0887
Technologies that provide potential for significant improvements in engine efficiency include, engine downsizing/downspeeding (enabled by advanced boosting systems such as an electrically driven compressor), waste heat recovery through turbocompounding or organic Rankine cycle and 48 V mild hybridization. FEV’s Integrated Turbocompounding/Waste Heat Recovery (WHR), Electrification and Supercharging (FEV-ITES) is a novel approach for integration of these technologies in a single unit. This approach provides a reduced cost, reduced space claim and an increase in engine efficiency, when compared to the independent integration of each of these technologies. This approach is enabled through the application of a planetary gear system. Specifically, a secondary compressor is connected to the ring gear, a turbocompounding turbine or organic Rankine cycle (ORC) expander is connected to the sun gear, and an electric motor/generator is connected to the carrier gear.
Journal Article

Laser-Induced Incandescence Measurements of Tailor-Made Fuels in an Optical Single-Cylinder Diesel Engine

2017-03-28
2017-01-0711
The influence of two oxygenated tailor-made fuels on soot formation and oxidation in an optical single cylinder research diesel engine has been studied. For the investigation a planar laser-induced incandescence (PLII) measurement technique was applied to the engine in order to detect and evaluate the planar soot distribution for the two bio fuels within a laser light sheet. Furthermore the OH* chemiluminescence and broad band soot luminosity was visualized by high speed imaging to compare the ignition and combustion behavior of tested fuels: Two C8 oxygenates, di-n-butylether (DNBE) and 1-octanol. Both fuels have the same molecular formula but differ in their molecular structure. DNBE ignites fast and burns mostly diffusive while 1-octanol has a low cetane number and therefore it has a longer ignition delay but a more homogeneous mixture at time of ignition. The two bio fuels were finally compared to conventional diesel fuel.
Technical Paper

Integration of an ORC Waste Heat Recovery with Electrification and Supercharging through Use of a Planetary Gear System for a Class 8 Tractor Application

2019-04-02
2019-01-0229
A novel approach to the Integration of Turbocompounding/WHR, Electrification and Supercharging technologies (ITES) to reduce fuel consumption in a medium heavy-duty diesel engine was previously published by FEV. This paper describes a modified approach to ITES to reduce fuel consumption on a heavy-duty diesel engine applied in a Class 8 tractor. The original implementation of the ITES incorporated a turbocompound turbine as the means for waste heat recovery. In this new approach, the turbocompound unit connected to the sun gear of the planetary gear set has been replaced by an organic Rankine cycle (ORC) turbine expander. The secondary compressor and the electric motor-generator are connected to the ring gear and the carrier gear respectively. The ITES unit is equipped with dry clutch and band brake allowing flexibility in mechanical and electrical integration of the ORC expander, secondary compressor and electric motor-generator to the engine.
Journal Article

Integration of Engine Start/Stop Systems with Emphasis on NVH and Launch Behavior

2013-05-13
2013-01-1899
Automatic engine start/stop systems are becoming more prevalent and increasing market share of these systems is predicted due to demands on improving fuel efficiency of vehicles. Integration of an engine start/stop system into a “conventional” drivetrain with internal combustion engine and 12V board system is a relatively cost effective measure to reduce fuel consumption. Comfort and NVH aspects will continue to play an important role for customer acceptance of these systems. Possible delay during vehicle launch due to the engine re-start is not only a safety relevant issue but a hesitating launch feel characteristic will result in reduced customer acceptance of these systems. The engine stop and re-start behavior should be imperceptible to the driver from both a tactile and acoustic standpoint. The lack of masking effects of the engine during the engine stop phases can cause other “unwanted” noise to become noticeable or more prominent.
Technical Paper

Influence of the Combination of Fuel Properties for a DI-Diesel Engine Under Partly Homogeneous Combustion

2013-04-08
2013-01-1685
Partly homogeneous combustion (PHC) can assist the reduction of the engine-out emissions but its influence is limited by using conventional diesel fuel. To verify whether alternatively designed fuels can help to improve the PHC performance, the impact of different fuel properties in combination with engine control levers have been studied. Based on single cylinder heavy duty direct injection diesel engine (DIDE) test results with different diesel and diesel-like fuels, operating under partly homogeneous combustion conditions, the impact of the combination of the fuel properties were investigated. The fuel matrix was designed such that the fuel properties varied in sufficiently large ranges, in order to be able to detect the impact of the properties at the selected operating points. A statistical principal component analysis (PCA) has been applied to the fuel matrix to specify the interrelationship between the fuel properties, as well as to derive the most independent fuel properties.
Technical Paper

Impact of Fuel Properties on the Performance of a Direct Injection Diesel Engine under Part Homogeneous Operating Conditions

2011-04-12
2011-01-1358
Tightening of emission norms necessitate intensified research in the field of emissions reduction. Fuel research opens up a vast area of potential improvement, since combustion behavior and the nature of the combustion products can be heavily influenced by fuel composition. In this paper, the effects of fuel properties on combustion and emissions shall be discussed, based on the study of standard diesel fuel, two types of diesel-like fuels and a kerosene fuel. Investigations were conducted on a single cylinder heavy duty direct-injected diesel engine operating under part-homogeneous combustion in the part-load operating range. For this purpose, a statistical design of experiments method (DOE) was utilized in order to evaluate the influence of each fuel property and, thus, develop a model for all selected fuels. Variation in EGR rates, injection and air patterns have significant effects on the combustion in the fuels under investigation.
Journal Article

Impact of Biomass-Derived Fuels on Soot Oxidation and DPF Regeneration Behavior

2013-04-08
2013-01-1551
To comply with the new regulations on particulate matter emissions, the manufacturers of light-duty as well as heavy-duty vehicles more commonly use diesel particulate filters (DPF). The regeneration of DPF depends to a significant extent on the properties of the soot stored. Within the Cluster of Excellence "Tailor-Made Fuels from Biomass (TMFB)" at RWTH Aachen University, the Institute for Combustion Engines carried out a detailed investigation program to explore the potential of future biofuel candidates for optimized combustion systems. The experiments for particulate measurements and analysis were conducted on a EURO 6-compliant High Efficiency Diesel Combustion System (HECS) with petroleum-based diesel fuel as reference and a today's commercial biofuel (i.e., FAME) as well as a potential future biomass-derived fuel candidate (i.e., 2-MTHF/DBE). Thermo gravimetric analyzer (TGA) was used in this study to evaluate the oxidative reactivity of the soot.
Technical Paper

Future Potential and Development Methods for High Output Turbocharged Direct Injected Gasoline Engines

2006-04-03
2006-01-0046
With rising gasoline prices in the US the need for increasingly fuel efficient powertrain concepts has never been more critical. Evaluation of the market on the other hand shows that the vehicle-buying consumer is unwilling to compromise engine power output for this needed fuel efficiency. Boosted, direct-injected gasoline engines with high specific output and low end torque seem to be the most logical path to satisfying both good part load fuel economy and generous power and torque characteristics. Turbo lag and subsequent lack of torque during transient acceleration (with low initial engine speeds) are characteristics of current turbocharged gasoline engines. These phenomena have prevented successful penetration of these boosted powertrains into the marketplace. Larger displacement, naturally aspirated gasoline engines have been the preferred choice.
X