Refine Your Search

Topic

Search Results

Standard

Thesaurus for Fuel System Components

2007-12-04
HISTORICAL
AIR1615A
This document provides a summary of names commonly used throughout the industry for aircraft fuel system components. It is a thesaurus intended to aid those not familiar with the lexicon of the industry.
Standard

Thesaurus for Fuel System Components

2020-02-24
CURRENT
AIR1615B
This document provides a summary of names commonly used throughout the industry for aircraft fuel system components. It is a thesaurus intended to aid those not familiar with the lexicon of the industry.
Standard

Self-Sealing Breakaway Valves for Crash-Resistant Aircraft Fuel Systems

2020-03-19
CURRENT
AIR1616B
MIL-STD-1290, 14 CFR 27.952, and 14 CFR 29.952 provide crash resistant fuel system design and test criteria that significantly minimize fuel leaks and occurrence of post-crash fire in survivable impacts. This document does not change and does not authorize changes in or deviations from MIL-Standard or regulatory requirements. This document provides guidance for the design, performance, and test criteria for self-sealing breakaway valves.
Standard

Optical equipment safety in fuel tanks

2018-11-15
WIP
ARP7977
This project aims to develop a framework of requirements which support safe installation and operation of optical devices within an aircraft fuel tank, specifically: 1: To determine optical power and energy limits which ensure safe operation of optical installations within an aircraft fuel tank over aircraft life and under all phases of flight, taking the limits provided in IEC 60079-28:20015 as a starting point. 2: To demonstrate optical and electrical power and energy equivalences, where possible. 3: To determine requirements for optical installations, including bonding and electrostatic discharge for non-conductive components such as optical fibres. 4: To provide guidelines for analysis of the hazards presented by the typical internal components of optical devices, such as failure modes of photo diodes and cells.
Standard

Nozzles and Ports – Gravity Fueling Interface Standards for Civil Aircraft

2012-01-03
CURRENT
AS1852D
This SAE Aerospace Standard (AS) defines the maximum allowable free opening dimensions for airframe fueling ports on civil aircraft that require the exclusive use of gasoline as an engine fuel, and the minimum free opening dimensions for airframe fueling ports on civil aircraft that operate with turbine fuels as the primary fuel type and with gasoline as the emergency fuel type. This SAE Aerospace Standard (AS) also defines the features and dimensions for airframe refueling ports on civil aircraft that require the exclusive use of turbine fuel as an engine fuel. In addition, this document defines the minimum fuel nozzle spout dimensions for turbine fuel ground service equipment, and the maximum fuel nozzle spout diameter for gasoline ground service equipment.
Standard

Nozzles and Ports - Gravity Fueling Interface Standard for Civil Aircraft

1997-08-01
HISTORICAL
AS1852B
This SAE Aerospace Standard (AS) defines the maximum allowable free opening dimensions for airframe fueling ports on civil aircraft that require the exclusive use of gasoline as an engine fuel and the minimum free opening dimensions for airframe fueling ports on civil aircraft that operate with turbine fuels as the primary fuel type. In addition, this document defines the minimum fuel nozzle tip dimensions for turbine fuel ground service equipment and the maximum fuel nozzle tip diameter for gasoline ground service equipment.
Standard

Nozzles and Ports - Gravity Fueling Interface Standard for Civil Aircraft

2006-03-24
HISTORICAL
AS1852C
This SAE Aerospace Standard (AS) defines the maximum allowable free opening dimensions for airframe fueling ports on civil aircraft that require the exclusive use of gasoline as an engine fuel, and the minimum free opening dimensions for airframe fueling ports on civil aircraft that operate with turbine fuels as the primary fuel type and with gasoline as the emergency fuel type. This SAE Aerospace Standard (AS) also defines the features and dimensions for airframe refueling ports on civil aircraft that require the exclusive use of turbine fuel as an engine fuel. In addition, this document defines the minimum fuel nozzle spout dimensions for turbine fuel ground service equipment, and the maximum fuel nozzle spout diameter for gasoline ground service equipment.
Standard

Method-Pressure Drop Tests for Fuel System Components

2013-08-09
HISTORICAL
ARP868C
This document provides recommended methods and describes associated equipment and test setups to assist in understanding and conducting pressure drop tests on fuel system components. Background information and suggestions are provided as means of improving accuracy and repeatability of test results. Although written specifically for fuel system components, the methods, equipment and suggestions presented herein apply equally to pressure drop tests of other liquid-handling devices.
Standard

METHOD - PRESSURE DROP TESTS FOR FUEL SYSTEM COMPONENTS

1994-09-01
HISTORICAL
ARP868B
To describe useful methods for conducting pressure drop tests of fuel system components for MIL-F-8615 or similar requirements and to present general suggestions for improving accuracy of test results.
Standard

METHOD - PRESSURE DROP TESTS FOR FUEL SYSTEM COMPONENTS

1983-06-01
HISTORICAL
ARP868A
To describe useful methods for conducting pressure drop tests of fuel system components for MIL-F-8615 or similar requirements; and to present general suggestions for improving accuracy of test results.
Standard

GRAVITY REFUELING NOZZLES AND PORTS INTERFACE STANDARD FOR CIVIL AIRCRAFT

1984-12-01
HISTORICAL
AS1852
This Aerospace Standard (AS) defines maximum free opening dimensions for airframe refueling ports on civil aircraft that require the exclusive use of aviation gasolines, and minimum free opening dimensions for airframe refueling ports on civil aircraft that operate with turbine fuels as a primary fuel type. In addition, this document defines the minimum refueling nozzle tip dimensions for turbine fuels ground service equipment, and the maximum refueling nozzle tip diameter dimension for aviation gasolines ground service equipment.
X