Refine Your Search

Topic

Search Results

Standard

Common Launch Acceptability Region (CLAR) Truth Data Generator Interface Control Document (ICD) for the CLAR Approach (CLARA)

2012-08-27
CURRENT
AIR5788A
This document specifies the CLARA interfaces of the CLAR Truth Data Generator as shown in Figure 1. The solid bold arrows are defined in Table 1 and Table 2. The dashed arrows from the CLAR Coefficient Generator and Truth Database to the CLAR Data Space Generator indicate a feedback loop and are defined in the CLAR Data Space Generator ICD (Reference 1). The dashed arrow from the Truth Database to the CLAR Coefficient Generator is defined in the CLAR Coefficient Generator ICD (Reference 2). The objective for the CLAR Truth Data Generator is to produce impact data sets to be used in the CLAR Coefficient Generator first to score and form LAR boundaries, and then to generate coefficients. A model of the weapon system that predicts weapon delivery performance to a predefined accuracy is to be used for this purpose. The model can be the Six-Degree-Of-Freedom (6DOF) equations of motion or another mathematical representation that meets the objective for the weapon system LAR.
Standard

Considerations for Safe Store Operation on Manned and Unmanned Vehicles

2012-05-03
HISTORICAL
AIR6027
The information presented in this AIR is intended to provide designers of armed unmanned systems with guidelines that may be applied to ensure safe integration and operation of weapons on unmanned platforms. The guidelines have been developed from experiences gained in the design and operation of weapons on manned aircraft that have been accepted by relevant safety authorities in the USA and Europe and proven effective over many years. Whilst the guidelines have been developed from experience with aircraft operations, the concepts are considered equally applicable to non-aircraft systems, such as those used on the surface or undersea environments. This document does not attempt to define or describe a comprehensive safety program for unmanned systems. System Safety is a system characteristic and a non-functional requirement. It has to be addressed at each level of system design, system integration and during each phase of system operation.
Standard

Considerations for Safe Store Operation on Manned and Unmanned Vehicles

2017-06-27
CURRENT
AIR6027A
The information presented in this AIR is intended to provide designers of armed unmanned systems with guidelines that may be applied to ensure safe integration and operation of weapons on unmanned platforms. The guidelines have been developed from experiences gained in the design and operation of weapons on manned aircraft that have been accepted by relevant safety authorities in the USA and Europe and proven effective over many years. Whilst the guidelines have been developed from experience with aircraft operations, the concepts are considered equally applicable to non-aircraft systems, such as those used on the surface or undersea environments. This document does not attempt to define or describe a comprehensive safety program for unmanned systems. System Safety is a system characteristic and a non-functional requirement. It has to be addressed at each level of system design, system integration and during each phase of system operation.
Standard

Fuze Well Mechanical Interface

2019-09-03
CURRENT
AS5680B
This interface standard applies to fuzes used in airborne weapons that use a 3-in fuze well. It defines: Physical envelope of the fuze well at the interface with the fuze. Load bearing surfaces of the fuze well. Physical envelope of the fuze and its connector. Mechanical features (e.g., clocking feature). Connector type, size, location and orientation. Retaining ring and its mechanical features (e.g., thread, tool interface). Physical envelope of the retaining ring at the interface with the fuze. Physical space available for installation tools. Torque that the installation tool shall be capable of providing. This standard does not address: Materials used or their properties. Protective finish. Physical environment of the weapon. Explosive interface or features (e.g., insensitive munitions (IM) mitigation). Charging tube. Torque on the retaining ring or loads on the load bearing surfaces.
Standard

Fuze Well Mechanical Interface

2012-07-25
HISTORICAL
AS5680A
This interface standard applies to fuzes used in airborne weapons that use a 3-in fuze well. It defines: Physical envelope of the fuze well at the interface with the fuze. Load bearing surfaces of the fuze well. Physical envelope of the fuze and its connector. Mechanical features (e.g., clocking feature). Connector type, size, location and orientation. Retaining ring and its mechanical features (e.g., thread, tool interface). Physical envelope of the retaining ring at the interface with the fuze. Physical space available for installation tools. Torque that the installation tool shall be capable of providing. This standard does not address: Materials used or their properties. Protective finish. Physical environment of the weapon. Explosive interface or features (e.g., insensitive munitions (IM) mitigation). Charging tube. Torque on the retaining ring or loads on the load bearing surfaces.
Standard

Fuze Well Mechanical Interface

2009-06-10
HISTORICAL
AS5680
This interface standard applies to fuzes used in airborne weapons that use a 3-Inch Fuze Well. It defines: a Physical envelope of the fuze well at the interface with the fuze. b Load bearing surfaces of the fuze well. c Physical envelope of the fuze and its connector. d Mechanical features (e.g. clocking feature). e Connector type, size, location and orientation. f Retaining ring and its mechanical features (e.g. thread, tool interface). g Physical envelope of the retaining ring at the interface with the fuze. h Physical space available for installation tools. i Torque that the installation tool shall be capable of providing. This standard does not address: j Materials used or their properties. k Protective finish. l Physical environment of the weapon. m Explosive interface or features (e.g. insensitive munitions (IM) mitigation). n Charging tube. o Torque on the retaining ring or loads on the load bearing surfaces.
Standard

Generic Aircraft-Store Interface Framework (GASIF)

2003-06-06
HISTORICAL
AIR5532
This SAE Aerospace Information Report (AIR) defines a Generic Aircraft-Store Interface Framework (GASIF). This is a common framework for modeling and specifying aircraft-store logical interfaces. GASIF complies with the OSI Basic Reference Model (ITU-T Rec. X.200 | ISO/IEC 7498-1) in that it describes operations and mechanisms which are assignable to layers as specified in the OSI Basic Reference Model. This AIR provides a mapping of the Interface Standard for Aircraft-store Electrical Interconnection System (AEIS), MIL-STD-1760, in Appendix C.
Standard

Generic Aircraft-Store Interface Framework (GASIF)

2012-08-22
CURRENT
AIR5532A
This SAE Aerospace Information Report (AIR) defines a Generic Aircraft-Store Interface Framework (GASIF). This is a common framework for modeling and specifying aircraft-store logical interfaces. GASIF complies with the OSI Basic Reference Model (ITU-T Rec. X.200 | ISO/IEC 7498-1) in that it describes operations and mechanisms which are assignable to layers as specified in the OSI Basic Reference Model. This AIR provides a mapping of the Interface Standard for Aircraft-store Electrical Interconnection System (AEIS), MIL-STD-1760, in Appendix C.
Standard

Handbook: Standard Electrical and Logical Interface for Airborne Fuzing Systems

2016-11-18
CURRENT
AIR6234
This Handbook is intended to provide useful information on the application of AS5716A. It is for use by System Program Offices, aircraft prime contractors, avionics and store system designers, system integrators and equipment manufacturers and users. This Handbook was prepared to provide users of the standard of the rationale and principles considered during the development of the standard. It is anticipated that the handbook will serve to assist developers in introducing new technology to achieve compliance with the standard and the underlying principles of the standard. It is intended that the Handbook be used alongside the standard, as it does not contain significant extracts of the standard.
Standard

Interface Standard, Common Interface Control Plan

2016-01-02
CURRENT
AS6030A
This Common Interface Control Plan (CICP) establishes the methodology for developing, controlling, and managing the technical interfaces between and within systems. An interface defines the interaction at a defined point between entities to achieve a combined system capability. A common interface defines the shared interaction between multiple systems on either side of the interface. The document is not intended to directly control any other aspects of program management, such as matters of contractual, financial, or those of an intellectual property rights nature. Members in the interface control process include: procurement authorities, design authorities, and other related agencies as defined in the specific System Interface Control Plan (SICP). For the purposes of this plan, only the terms Procuring Organization and Producing Organization will be used.
Standard

Interface Standard, Common Interface Control Plan

2011-01-03
HISTORICAL
AS6030
This Common Interface Control Plan (CICP) establishes the methodology for developing, controlling and managing the technical interfaces between and within systems. The document is not intended to directly control any other aspects of program management, such as matters of contractual, financial or those of an intellectual property rights nature. Members in the interface control process include: procurement authorities, design authorities and other related agencies as defined in the specific System Interface Control Plan (SICP). For the purposes of this plan only the terms Procuring Organization and Producing Organization will be used.
Standard

Interface Standard, Interface for Micro Munitions

2009-12-02
HISTORICAL
AS5726
This standard only defines interconnect, electrical and logical (functional) requirements for the interface between a Micro Munition and the Host. The physical and mechanical interface between the Micro Munition and Host is undefined. Individual programs will define the relevant requirements for physical and mechanical interfaces in the Interface Control Document (ICD) or system specifications. It is acknowledged that this does not guarantee full interoperability of Interface for Micro Munitions (IMM) interfaces until further standardization is achieved.
Standard

Interface Standard, Interface for Micro Munitions

2023-10-06
CURRENT
AS5726A
This standard only defines interconnect, electrical and logical (functional) requirements for the interface between a Micro Munition and the Host. The physical and mechanical interface between the Micro Munition and Host is undefined. Individual programs will define the relevant requirements for physical and mechanical interfaces in the Interface Control Document (ICD) or system specifications. It is acknowledged that this does not guarantee full interoperability of Interface for Micro Munitions (IMM) interfaces until further standardization is achieved.
Standard

Interface Standard, Miniature Mission Store Interface

2023-05-22
CURRENT
AS5725C
This SAE Aerospace Standard (AS) defines implementation requirements for the electrical interface between: a Aircraft carried miniature store carriage systems and miniature stores b Aircraft parent carriage and miniature stores c Surface-based launch systems and miniature stores The interface provides a common interfacing capability for the initialization and employment of smart miniature munitions and other miniature stores from the host systems. Physical, electrical, and logical (functional) aspects of the interface are addressed.
Standard

Interface Standard, Miniature Mission Store Interface

2008-01-08
HISTORICAL
AS5725
This standard defines implementation requirements for the electrical interface between: a aircraft carried miniature store carriage systems and miniature stores b aircraft parent carriage and miniature stores c surface based launch systems and miniature stores The interface provides a common interfacing capability for the initialization and employment of smart miniature munitions and other miniature stores from the host systems. Physical, electrical, and logical (functional) aspects of the interface are addressed.
Standard

Interface Standard, Miniature Mission Store Interface

2015-12-19
HISTORICAL
AS5725B
This standard defines implementation requirements for the electrical interface between: a aircraft carried miniature store carriage systems and miniature stores b aircraft parent carriage and miniature stores c surface based launch systems and miniature stores The interface provides a common interfacing capability for the initialization and employment of smart miniature munitions and other miniature stores from the host systems. Physical, electrical, and logical (functional) aspects of the interface are addressed.
X