Refine Your Search

Topic

Search Results

Standard

Wheels - Recreational and Utility Trailer Fatigue Test Procedure and Performance Requirements

2017-08-14
CURRENT
J1204_201708
This SAE Recommended Practice provides uniform procedures and minimum performance requirements for fatigue testing ferrous and aluminum wheels intended for normal highway service on travel, camping, and boat and light utility trailers drawn by passenger cars, light trucks, and multipurpose vehicles. For procedures and minimum performance requirements for wheels used on trucks, see SAE J267, and for wheels used on passenger cars, see SAE J328. For the application of passenger car and light truck wheels (inset less than 0.10 m) to this trailer service, use this procedure. For the application of heavier truck wheels (inset 0.10 m (or more)) use SAE J267. Mobile home service is outside the scope of this document. There are two basic test procedures described, a cornering fatigue test and radial fatigue test. The cornering test is directed at the wheel disc; whereas the radial test also examines the rim and attachment portion of the wheel.
Standard

Wheel Nut Seat System Test Procedures and Performance Requirements for Passenger Cars and Light Trucks

2012-07-20
CURRENT
J2316_201207
This SAE Recommended Practice provides minimum performance requirements and uniform procedures for nut seat system strength of wheels intended for normal highway use on passenger cars, light trucks, (except dual wheels, which are covered by SAE J1965) and multipurpose passenger vehicles. The nut seat system includes the wheel, wheel bolts, and wheel nuts as applicable. Many factors must be considered in design and validation of wheel attachments for each specific vehicle. The individual components should be evaluated per the SAE standards referenced.
Standard

Wheel Nut Seat Strength

2015-12-17
CURRENT
J2315_201512
The purpose of this test is to evaluate the axial strength of the nut seat of wheels intended for use on passenger cars, light trucks, and multipurpose vehicles. In addition, a minimum contact area is recommended to ensure enough strength for the rotational force in tightening a nut against the nut seat. While this test ensures the minimum strength of the nut seat, the wheel must also have a degree of flexibility. This flexibility, as well as bolt tension, are important to maintain wheel retention.
Standard

WHEEL NUT SEAT STRENGTH

1998-02-01
HISTORICAL
J2315_199802
The purpose of this test is to evaluate the axial strength of the nut seat of wheels intended for use on passenger cars, light trucks, and multipurpose vehicles. In addition, a minimum contact area is recommended to ensure enough strength for the rotational force in tightening a nut against the nut seat. While this test ensures the minimum strength of the nut seat, the wheel must also have a degree of flexibility. This flexibility, as well as bolt tension, are important to maintain wheel retention.
Standard

Test Methodology for Evaluating the Chemical Compatibility of Wheel Finishes with Various Chemicals

2008-11-21
HISTORICAL
J2792_200811
This document proposes methods for the testing and evaluation of aluminum wheel and wheel trim surface finishes for compatibility with various types of tire, wheel and car wash cleaning materials, and other chemicals that might come into contact with these automotive components. It is recognized that each end user of this methodology might seek answers to questions that are unique to his business or situation. Therefore, the procedure is written in a generic sequence that could be strictly followed, repeated, or modified in order to provide the user with the best results. Example decision tree are provided to help the user select a sequence of exposure steps that would best suit his needs, (reference Figures 1, 2). This procedure should not be utilized if the intent is to evaluate the compatibility of wheel finishes to any flammable products, because those chemistries would require special laboratory safety and handling precautions.
Standard

Test Methodology for Evaluating the Chemical Compatibility of Wheel Finishes with Various Chemicals

2015-09-22
CURRENT
J2792_201509
This document proposes methods for the testing and evaluation of aluminum wheel and wheel trim surface finishes for compatibility with various types of tire, wheel and car wash cleaning materials, and other chemicals that might come into contact with these automotive components. It is recognized that each end user of this methodology might seek answers to questions that are unique to his business or situation. Therefore, the procedure is written in a generic sequence that could be strictly followed, repeated, or modified in order to provide the user with the best results. Example decision tree are provided to help the user select a sequence of exposure steps that would best suit his needs, (reference Figures 1, 2). This procedure should not be utilized if the intent is to evaluate the compatibility of wheel finishes to any flammable products, because those chemistries would require special laboratory safety and handling precautions.
Standard

Scribing of Coatings in Preparation for Testing of Wheels and Wheel Trim

2019-09-18
WIP
J2634
This SAE practice is intended for the sample preparation of test pieces for automotive wheels and wheel trim. The practice provides a consistent scribing method for use on test panels and or component parts with substrate chemical pretreatment and coating systems. Test specimens can then be subjected to various corrosion tests in order to evaluate performance without significant variations of the degree of exposure of the substrate. The scribing is used to create a break in the coating/finishing as can occur in the field through gravel and other damaging conditions. Significant variability is attributed to surface contour, coating hardness/softness, operator reproducibility, and the scribing tool and it's condition.
Standard

Scribing of Coatings in Preparation for Testing of Wheels and Wheel Trim

2015-03-19
CURRENT
J2634_201503
This SAE practice is intended for the sample preparation of test pieces for automotive wheels and wheel trim. The practice provides a consistent scribing method for use on test panels and or component parts with substrate chemical pretreatment and coating systems. Test specimens can then be subjected to various corrosion tests in order to evaluate performance without significant variations of the degree of exposure of the substrate. The scribing is used to create a break in the coating/finishing as can occur in the field through gravel and other damaging conditions. NOTE— Significant variability is attributed to surface contour, coating hardness/softness, operator reproducibility, and the scribing tool and it’s condition.
Standard

Road Hazard Impact Test for Wheel and Tire Assemblies (Passenger Car, Light Truck, and Multipurpose Vehicles)

2016-09-16
CURRENT
J1981_201609
The test is designed to evaluate the frontal impact resistance of wheel and tire assemblies used with passenger cars, light trucks and multi-purpose vehicles. The test is specifically related to vehicle pothole tests that are undertaken by most vehicle manufacturers. The scope has been expanded to allow the use of a striker that can be angled to preferentially impact the inboard and outboard wheel flange. For side impact of the outboard rim flange only, please refer to SAE J175. This SAE Recommended Practice provides a procedure to test a wheel or a tire and the test failure criteria. The specific test for a vehicle requires input from a pothole test on that vehicle to establish the drop height of the striker used in this test.
Standard

Road Hazard Impact Test for Wheel and Tire Assemblies (Passenger Car, Light Truck, and Multipurpose Vehicles)

2011-04-25
HISTORICAL
J1981_201104
The test is designed to evaluate the frontal impact resistance of wheel and tire assemblies used with passenger cars, light trucks and multi-purpose vehicles. The test is specifically related to vehicle pothole tests that are undertaken by most vehicle manufacturers. The scope has been expanded to allow the use of a striker that can be angled to preferentially impact the inboard and outboard wheel flange. For side impact of the outboard rim flange only, please refer to SAE J175. This SAE Recommended Practice provides a procedure to test a wheel or a tire and the test failure criteria. The specific test for a vehicle requires input from a pothole test on that vehicle to establish the drop height of the striker used in this test.
Standard

Registration and Conformity Assessment Process for Passenger Cars and Light Trucks Wheels

2015-08-12
CURRENT
J3010_201508
The SAE J2530 provides performance, sampling, test procedures, and marking requirements for wheels intended for normal highway use on passenger cars, light trucks, and multipurpose passenger vehicle. This Recommended Practice (which is separate from SAE J2530) specifies the workflow of the Wheel Conformity Assessment Program. This program allows wheel manufacturers to register their product compliant to SAE J3010. The following items precede display of “SAE J3010” on any particular wheel design: a Manufacturer registration All manufactures with the objective to pursue registration, shall complete the registration as an individual manufacturer via the registrar’s website http://wheeldb.registrar.domain.
Standard

Nomenclature—Wheels for Passenger Cars, Light Trucks, and Multipurpose Vehicles

2010-01-07
HISTORICAL
J1982_201001
This SAE Recommended Practice establishes uniform engineering nomenclature for the most common wheel constructions, and their components used on passenger cars, light trucks, and multipurpose vehicles. These wheel constructions are welded “Disc Wheels”, “Cast Wheels” and “Forged Wheels”. This nomenclature and the accompanying drawings are intended to define fundamental wheel terms rather than to provide a comprehensive tabulation of all wheel design types.
Standard

Nomenclature - Wheels for Passenger Cars, Light Trucks, and Multipurpose Vehicles

2016-05-13
CURRENT
J1982_201605
This SAE Recommended Practice establishes uniform engineering nomenclature for the most common wheel constructions, and their components used on passenger cars, light trucks, and multipurpose vehicles. These wheel constructions are welded “Disc Wheels”, “Cast Wheels” and “Forged Wheels”. This nomenclature and the accompanying drawings are intended to define fundamental wheel terms rather than to provide a comprehensive tabulation of all wheel design types.
Standard

Mechanical and Material Requirements for One Piece Wheel Nuts

2012-10-18
CURRENT
J2283_201210
This SAE Standard covers the chemical, metallurgical, and mechanical requirements for one piece passenger car and truck ferrous wheel nuts with conical or spherical nut seats for the following sizes: This test is for typical wheel nuts. Special applications (nut material and/or configurations) may require special conditions which must meet load values in 3.4.
Standard

Filiform Corrosion Test Procedure for Painted Aluminum Wheels and Painted Aluminum Wheel Trim

2019-09-18
WIP
J2635
This test procedure defines a laboratory procedure for generating and evaluating filiform corrosion on painted aluminum wheels and painted aluminum wheel trim. While this test was developed specifically for the testing of painted aluminum wheels and wheel trim it may be applicable to other components. The application owner will need to assess if this test generates filiform similar to that found in the relevant usage to ensure it will provide accurate data for the application.
Standard

Filiform Corrosion Test Procedure for Painted Aluminum Wheels and Painted Aluminum Wheel Trim

2007-08-09
HISTORICAL
J2635_200708
This test procedure defines a laboratory procedure for generating and evaluating filiform corrosion on painted aluminum wheels and painted aluminum wheel trim. While this test was developed specifically for the testing of painted aluminum wheels and wheel trim it may be applicable to other components. The application owner will need to assess if this test generates filiform similar to that found in the relevant usage to ensure it will provide accurate data for the application.
Standard

Filiform Corrosion Test Procedure for Painted Aluminum Wheels and Painted Aluminum Wheel Trim

2015-03-19
CURRENT
J2635_201503
This test procedure defines a laboratory procedure for generating and evaluating filiform corrosion on painted aluminum wheels and painted aluminum wheel trim. While this test was developed specifically for the testing of painted aluminum wheels and wheel trim it may be applicable to other components. The application owner will need to assess if this test generates filiform similar to that found in the relevant usage to ensure it will provide accurate data for the application.
Standard

Corrosion Test Master Establishment

2019-09-18
WIP
J2636
This SAE lab recommended practice may be applied to corrosion test methods such as salt spray, filiform, Corrosion creep back, etc. This procedure is intended to permit corrosion testing to be assessed between Laboratories for correlation purposes.
Standard

Corrosion Test Master Establishment

2015-03-19
CURRENT
J2636_201503
This SAE lab recommended practice may be applied to corrosion test methods such as salt spray, filiform, Corrosion creep back, etc. This procedure is intended to permit corrosion testing to be assessed between Laboratories for correlation purposes.
Standard

Biaxial Wheel Fatigue Test

2016-04-27
CURRENT
J2562_201604
This SAE Recommended Practice provides uniform laboratory procedures for biaxial fatigue testing of wheels intended for normal highway use and temporary use on passenger car vehicles and light trucks and minimum cycle requirement for ferrous wheels for ballasted passenger car applications. The appendices provide scalable load files that are applicable to ballasted passenger cars and ballasted light trucks. A load file for unballasted passenger cars will be added to this document.
X