Refine Your Search

Topic

Author

Search Results

Standard

15 Pole Connector Between Towing Vehicles and Trailers with 12 Volt Nominal Supply

2020-02-25
CURRENT
J2691_202002
This SAE Standard establishes the minimum construction and performance requirements for a 15 pole connector between towing vehicles and trailers, for trucks, trailers, and dollies, for 12 VDC nominal applications in conjunction with SAE J2742. The connector accommodates both power and ISO 11992-1 signal circuits along with dual ground wires to accommodate grounding requirements within the constraints of the SAE J2691 terminal capacity.
Standard

15 Pole Connector Between Towing Vehicles and Trailers with 12 Volt Nominal Supply

2018-04-15
HISTORICAL
J2691_201804
This SAE standard establishes the minimum construction and performance requirements for a 15 Pole Connector Between Towing Vehicles and Trailers, for trucks, trailers, and dollies in conjunction with SAE J2742. The connector accommodates both power and ISO 11992-1 signal circuits along with dual ground wires to accommodate grounding requirements within the constraints of the SAE J2691 terminal capacity.
Standard

15 Pole Connector Between Towing Vehicles and Trailers with 12 Volt Nominal Supply

2013-04-09
HISTORICAL
J2691_201304
This SAE standard establishes the minimum construction and performance requirements for a 15 Pole Connector Between Towing Vehicles and Trailers, for trucks, trailers, and dollies in conjunction with SAE J2742 “Combination 11 Conductors and 4 Pairs ECBS Cable”. The connector accommodates both power and ISO 11992-1 signal circuits along with dual ground wires to accommodate grounding requirements within the constraints of the SAE J2691 terminal capacity.
Standard

649 Handbook

2020-02-13
WIP
GEIAHB649B
This handbook is intended to assist the user to understand the ANSI/EIA-649B standard principles and functions for Configuration Management (CM) and how to plan and implement effective CM. It provides CM implementation guidance for all users (CM professionals and practitioners within the commercial and industry communities, DoD, military service commands, and government activities (e.g., National Aeronautics and Space Administration (NASA), North Atlantic Treaty Organization (NATO)) with a variety of techniques and examples. Information about interfacing with other management systems and processes are included to ensure the principles and functions are applied in each phase of the life cycle for all product categories.
Standard

A Guide for the Damaging Effects of Tire and Wheel Failures

2013-10-25
HISTORICAL
AIR5699
Consideration for the damaging effects to aircraft from the failure of wheels and tires should be evaluated. This document discusses the types of problems in-service aircraft have experienced and methodology in place to assist the designers when evaluating threats for new aircraft design. The purpose of this document is to provide a history of in-service problems, provide a historical summary of the design improvements made to wheels and tires during the past 40 years and to offer methodology which has been used to help designers assess the threat to ensure the functionality of systems and equipment located in and around the landing gear and in wheel wells.
Standard

A Guide for the Damaging Effects of Tire and Wheel Failures

2022-07-06
CURRENT
AIR5699A
Consideration for the damaging effects to aircraft from the failure of wheels and tires should be evaluated. This document discusses the types of problems in-service aircraft have experienced and methodology in place to assist the designers when evaluating threats for new aircraft design. The purpose of this document is to provide a history of in-service problems, provide a historical summary of the design improvements made to wheels and tires during the past 40 years, and to offer methodology which has been used to help designers assess the threat to ensure the functionality of systems and equipment located in and around the landing gear and in wheel wells.
Standard

A Guide to Aircraft Power Train Monitoring

2008-06-04
HISTORICAL
AIR4174
The purpose of this SAE Aerospace Information Report (AIR) is to provide management, designers, and operators with information to assist them to decide what type of power train monitoring they desire. This document is to provide assistance in optimizing system complexity, performance and cost effectiveness. This document covers all power train elements from the point at which the gas generator energy is transferred to mechanical energy for propulsion purposes. The document covers engine power train components, their interfaces, transmissions, gearboxes, hanger bearings, shafting and associated rotating accessories, propellers and rotor systems as shown in Figure 1. This document addresses application for rotorcraft, turboprop, and propfan drive trains for both commercial and military aircraft.
Standard

A Guide to Landing Gear System Integration

2016-04-10
HISTORICAL
AIR5451
The landing gear system is a major airframe system that needs to be integrated very efficiently to minimize the penalties of weight, cost, dispatch reliability and maintenance. As the landing gear system business develops and large scale teaming arrangements and acquisitions become increasingly common, it may be desirable in some instances to procure an Integrated Landing Gear System. This document provides guidelines and useful references for developing an integrated landing gear system for an aircraft and is divided into four sections: Landing Gear Configuration Requirements (Section 3) Landing Gear Functional Requirements (Section 4) Landing Gear System Integrity Requirements (Section 5) Landing Gear Program Requirements (Section 6) The landing gear system encompasses all landing gear structural and subsystem elements. Structural elements include shock struts, braces, fittings, pins, wheels, tires and brakes.
Standard

A Guide to Landing Gear System Integration

2022-09-08
CURRENT
AIR5451A
The landing gear system is a major and safety critical airframe system that needs to be integrated efficiently to meet the overall aircraft program goals of minimizing the penalties of weight, cost, dispatch reliability and maintenance. As the landing gear system business develops and large-scale teaming arrangements and acquisitions become increasingly common, it may be desirable in some instances to procure an Integrated Landing Gear System. This document provides guidelines and useful references for developing an integrated landing gear system for an aircraft. The document structure is divided into four sections: Landing Gear System Configuration Requirements (Section 3) Landing Gear System Functional Requirements (Section 4) Landing Gear System Integrity Requirements (Section 5) Landing Gear System Program Requirements (Section 6) The landing gear system encompasses all landing gear structural and subsystem elements.
Standard

A Guideline for Application of High-Density Fiber Optic Interconnects to Aerospace Platforms

2022-07-08
CURRENT
AIR5271A
This SAE Aerospace Information Report (AIR5271) covers the basic attributes of a second-generation robust, reliable high-density fiber optic interconnect system for aerospace applications. The intent is to take advantage of recent commercial developments in materials, components and manufacturing methods to develop rugged high-density fiber optic interconnects optimized for aerospace and automotive applications, which can accommodate a variety of optical fiber waveguide types. These waveguide types include single mode and multi-mode glass/glass fibers and waveguides, plastic clad silica fibers and waveguides, and all polymer fibers and waveguides. This second generation interconnect system should represent a dramatic improvement over first generation. The cable should be extremely robust eliminating any concerns over cable damage or fiber breakage in an aerospace environment.
Standard

A Guideline for Application of High-Density Fiber Optic Interconnects to Aerospace Platforms

2009-03-03
HISTORICAL
AIR5271
This SAE Aerospace Information Report (AIR5271) covers the basic attributes of a second-generation robust, reliable high-density fiber optic interconnect system for aerospace applications. The intent is to take advantage of recent commercial developments in materials, components and manufacturing methods to develop rugged high-density fiber optic interconnects optimized for aerospace and automotive applications, which can accommodate a variety of optical fiber waveguide types. These waveguide types include single mode and multi-mode glass/glass fibers and waveguides, plastic clad silica fibers and waveguides, and all polymer fibers and waveguides. This second generation interconnect system should represent a dramatic improvement over first generation. The cable should be extremely robust eliminating any concerns over cable damage or fiber breakage in an aerospace environment.
Standard

ACCESS SYSTEMS FOR CONSTRUCTION AND INDUSTRIAL EQUIPMENT

1970-07-01
HISTORICAL
J185_197007
This recommended practice covers the criteria for steps, ladders, walkways, platforms, grab rails (handrails), grab irons, guardrails, and entrance openings as they relate to aiding the operator and/or servicemen in performing their functions on the vehicle.
X