Refine Your Search

Topic

Search Results

Video

Vehicle Duty Cycles and Their Role in the Design and Evaluation of Advanced Vehicle Technologies

2012-04-10
Understanding in-use fleet operating behavior is of paramount importance when evaluating the potential of advanced/alternative vehicle technologies. Accurately characterizing real world vehicle operation assists in properly allocating advanced technologies, playing a role in determining initial payback period and return on investment. In addition, this information contributes to the design and deployment of future technologies as the result of increased awareness regarding tractive power requirements associated with typical operating behavior. In this presentation, the concept of vehicle duty cycles and their relation to advanced technologies will be presented and explored. Additionally, current research attempts to characterize school bus operation will be examined, and existing computational analysis and evaluation tools associated with these efforts discussed. Presenter Adam Duran, National Renewable Energy Laboratory
Video

Using the Beer-Lambert Law and Kubelka-Munk Theory to Model Percent Transmittance of Multilayer Composite Coatings

2012-05-23
Transmission of light through automotive topcoat and primer layers can lead to degradation of the underlying electrocoat layer and to topcoat delamination. In order to protect against this, it is critical that transmission of both ultraviolet wavelengths and certain visible wavelengths be effectively blocked by the topcoat and primer layers. The clearcoat, basecoat and primer each have their own role and combine to protect against light transmission. The transmittance of these combined layers is typically measured by the Integrating Sphere UV-Visible Spectrophotometer. It would both simplify measurement of the topcoat systems and allow better system modeling if these layers could be measured separately and combined mathematically. We demonstrate here that absorbing and reflecting pigments can be effectively modeled using the Beer-Lambert law while results for scattering pigments are consistent with the Kubelka-Munk theory.
Video

Using SCADE System for the Design and Integration of Critical Systems

2012-03-14
This presentation shows the SCADE System product line for systems modeling and generation based on the SysML standard and the Eclipse Papyrus open source technology. SCADE System has been developed in the framework of Listerel, a joint laboratory of Esterel Technologies, provider of the SCADE�, and CEA LIST, project leader of the Eclipse component, Papyrus. From an architecture point of view, the Esterel SCADE tools are built on top of the SCADE platform which includes both SCADE Suite�, a model-based development environment dedicated to critical software, and SCADE System enabling model-based system engineering. SCADE System includes Papyrus, an open source component (under EPL license), integrated in the modeling platform of Eclipse. Using this integrated modeling platform, both system and software teams share the same environment for system development. Furthermore, other model-based tools can be added to the environment, due to the use of Eclipse.
Video

Using Programming and Simulation to Develop Optimized Processes for Automated Fiber Placement (AFP) CNC Machines

2012-03-21
Many manufacturing companies want to apply AFP technology to complex high-curvature part shapes. As new AFP machine technologies are developed to specifically apply material over complex shapes, new and innovative NC programming approaches are needed to successfully, reliably, and accurately apply material with good consolidation, while meeting the fiber direction and coverage requirements. A big issue with AFP is the production rate vs. part complexity. Most complex shapes can be created with a single .125? wide strip (tow) of material. But the production time would be impractically long. So machine builders create 6, 8, 16, even 32 tow AFP heads, and use the widest tow possible for the highest laydown rates. But then wide compaction rollers on these systems have difficulty consolidating material over curved surfaces, and the minimum steering radius of wider tows challenge the software?s ability to meet the layup requirements.
Video

Transesterification of Waste Cooking Oil in Presence of Crushed Seashell as a Support for Solid Heterogeneous Catalyst

2011-12-05
Developing relatively cheap and widely available resources for heterogeneous solid catalyst synthesis is a promising approach for biodiesel fuel industry. Seashell which is essentially calcium carbonate can be used as a basic support for transesterification heterogeneous catalysts. In the present investigation, the alcoholysis of waste frying oil has been carried out using seashell-supported K3 PO4 as solid catalyst. Presenter Essam Oun Al-Zaini, PhD student, UNSW
Video

Toyota's Comprehensive Environmental Technology: Providing Choices for Sustainable Mobility

2012-03-31
Toyota is committed to the development of advanced powertrains to help address concerns with future oil supplies, the impacts of increased carbon dioxide emissions, and air pollution. Towards that end Toyota is planning to bring to market in 2012 a plug-in hybrid vehicle, a short range electric vehicle, a long range electric vehicle and in the 2015 timeframe hydrogen powered fuel cell vehicle. This presentation will focus on our electric vehicle plans and the challenges with bringing electric vehicle to the market. From the 2010 Alt Fuels Study, Toyota has identified that two key barriers for EV adoption are the times to charge the vehicle, and electricity cost. The study finds that the current infrastructure could be sufficient for most driving needs but EV drivers will still need to alter their driving habits slightly.
Video

The Utilization of Flax Fiber Reinforcement in Polypropylene Compounds

2011-11-17
Polypropylene is typically reinforced with commodities that are non renewable and require a great deal of energy to produce. The marketplace needs a reinforcement that can offer beneficial physical properties, such as impact, while being attained from a renewable green source. Compounding flax fiber, which is traditionally an agricultural waste product burned by farmers, with polypropylene yields physical properties similar to traditional glass filled polypropylene. This combination should lead to cost saving opportunities while not sacrificing part performance. Presenter James Preston, Rhetech Inc.
Video

Technical Breakthroughs in Development of a Single Motor Full Hybrid System

2011-11-18
Nissan has released our original HEV system in Japan on November 2010, and will release it in US market on March 2011. The 1 motor 2 clutch parallel type using conventional 7 speed automatic transmission has been employed without torque converter and with a manganese cathode and laminated type Li-ion Battery. This system is well recognized its higher efficiency but lower weight and cost, however, has never realized due to technical difficulties of smoothness. At this session, performance achievements and hinged breakthrough technologies will be presented. Presenter Tetsuya Takahashi, Nissan Motor Co., Ltd.
Video

Tailored Conversion Coatings for Enhanced Adhesion to Metal

2012-03-21
The use of silane chemistries tailored to promote the adhesion of performance and appearance coatings to metal substrates are requiring new methodologies for measuring, approving, and implementing on commercial aircraft. Engineering performance, lean manufacturing, environmental and employee safety considerations are driving the commercial aerospace industry to replace long standing conversion coating materials and processes. Tailored silane chemistries such as Boegel are being considered for many of these applications. Silanes work by reacting with metal oxides providing a strong covalent bond, cross linking to form a tough barrier and have an organic functional group tailored to react with the specific resin system in the subsequent coating. Traditionally conversion coatings such as anodize and chromate conversion coating performance is validated based on meeting standalone requirements.
Video

Supplier Discussions - 2012

2012-03-29
Seven different suppliers will discuss their latest technologies. Panelist Jon Bereisa, Auto Lectrification LLC John Burgers, Dana Canada Corporation Derek De Bono, Valeo Dusan Graovac, Infineon Technologies AG Ronald P. Krupitzer, American Iron and Steel Institute Timothy J. Lawler, Bosch Corp. Ian M. Sharp, Flybrid Systems LLP
Video

Study of Materials and Coatings Used for Drilling Carbon Fiber Re-inforced Plastics

2012-03-14
With the increased usage of Carbon Fiber Reinforced Plastics (CFRP) in the aircraft industry, there has been increased pressure to improve cutting tool life. Tungsten carbide tools were the first to be applied to CFRP materials. Poly Crystalline Diamond (PCD) tools also became an acceptable material to be used as a cutting tool material. In recent years, Chemical Vapor Deposition (CVD) diamond tools have become more popular as a cutting tool material for CFRP. This study compares these possible cutting tool materials in the drilling of CFRP. Wear is measured as well as hole quality. Life is determined by common industry standards with regard to fiber break out in a common CFRP material. An economic analysis is conducted in order to determine cost per hole. Presenter Christophe Petit
Video

Study of Exit Burr Formation and Exit Burr Reduction in Automated Drilling of Titanium Stacked With Carbon Fiber Composite

2012-03-16
With the growing use of carbon fiber composite structure in Aircraft Manufacturing, the challenge of drilling carbon fiber stacked with Titanium has become a focus point. Due to the abrasive nature of the carbon fiber (CF), cutting tool life is relatively short when drilling carbon fiber stalked with Titanium. A common drill wear indicator is exit burr formation in the Titanium. As drilling tools wear due to the abrasive nature of the CF, the exit burr in the in the Titanium increases. This study seeks to understand the factors that lead to tool wear and exit burr formation. A correlation may be made relating drilling thrust forces with exit burr formation. Different cutting tools geometries and materials are studied using a high speed camera to attempt to understand the factors influencing exit burr formation. Findings are optimized and tested. Decreasing exit burr in the drilling of CF and Titanium may increase tool life thereby reducing tool costs to airframe manufacturers.
Video

Spotlight on Design: Diagnostics and Prognostics: Proactive Maintenance and Failure Prevention

2015-04-16
“Spotlight on Design” features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. In the episode “Diagnostics and Prognostics: Proactive Maintenance and Failure Prevention” (21:04), Delphi engineers explain how they leverage the growing number of sensors and computing power in vehicles to diagnose and proactively solve emerging mechanical or electronic problems, before a breakdown occurs. This video also looks at the next generation of automotive telematics, with HEM Data demonstrating how in-vehicle data acquisition is used to monitor the inner workings of vehicles.
Video

Spotlight on Design: Composite Materials: Advanced Materials and Lightweighting

2015-04-15
“Spotlight on Design” features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. In the episode “Composite Materials: Advanced Materials and Lightweighting” (30:20), Molded Fiber Glass Companies, known for its deep involvement in the creative development of the molded fiberglass process for the Corvette, demonstrates the manufacturing of sheet molded composite for fiberglass parts. Tanom Motors introduces the Tanom Invader, a blend between an automobile and a motorcycle made exclusively with composite materials. Finally, Euro-Composites demonstrates the manufacturing of honeycomb core material made out of aramid paper and phenolic resin used in aircraft structures.
Video

Spotlight on Design Insight: Diagnostics and Prognostics: Telematics Deep Dive

2015-05-04
“Spotlight on Design: Insight” features an in-depth look at the latest technology breakthroughs impacting mobility. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. Telematics, the convergence of telecommunications and informatics, uses electronic and computer technology built in to the vehicle to provide vehicle tracking, satellite navigation, wireless technology, and diagnostic information. In the episode “Diagnostics and Prognostics: Telematics Deep Dive” (8:09), an engineer from Delphi’s Telematics program discusses the advantages and challenges of telematics devices for the automotive industry, demonstrates the installation of an aftermarket telematics device, and shows how telematics can enhance diagnostics and preventative maintenance.
Video

Spotlight on Design Insight: Composite Materials: New Trends in Automotive Design

2015-05-08
“Spotlight on Design: Insight” features an in-depth look at the latest technology breakthroughs impacting mobility. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. When automotive and aerospace manufacturers look for a material with superior lightweight and strength characteristics, they often look no further than composite materials. In the episode “Composite Materials: New Trends in Automotive Design” (10:20), an engineer from Molded Fiber Glass Research Company demonstrates how they develop and test the properties of composite materials, and an engineer at MirTEQ Incorporated discusses designing molds for an aftermarket composite part.
Video

SCR Deactivation Study for OBD Applications

2012-06-18
Selective catalytic reduction (SCR) catalysts will be used to reduce oxides of nitrogen (NOx) emissions from internal combustion engines in a number of applications [1,2,3,4]. Southwest Research Institute® (SwRI)® performed an Internal Research & Development project to study SCR catalyst thermal deactivation. The study included a V/W/TiO2 formulation, a Cu-zeolite formulation and an Fe-zeolite formulation. This work describes NOx timed response to ammonia (NH3) transients as a function of thermal aging time and temperature. It has been proposed that the response time of NOx emissions to NH3 transients, effected by changes in diesel emissions fluid (DEF) injection rate, could be used as an on-board diagnostic (OBD) metric. The objective of this study was to evaluate the feasibility and practicality of this OBD approach.
Video

Review of Updated Aerospace Recommended Practices ARP5061A, "Guidelines for Testing and Support of Aerospace, Fiber Optic, Inter-Connect Systems"

2012-03-12
PRESENTATION ABSTRACT (ROI Approval BOE021811-122) REVIEW OF UPDATED AEROSPACE RECOMMENDED PRACTICES ARP5061A, Guidelines for Testing and Support of Aerospace, Fiber Optic, Inter-Connect Systems RATIONALE: A single source document to capture current best practices, methods, test equipment, and materials that support fiber optic interconnect systems including high-density applications deployed in Aerospace platforms. SCOPE: This presentation will describe how the ARP5061 document provides the maintainer unique guidelines for optical performance testing of short haul fiber optic inter-connect systems used in aerospace vehicles. The focus of this document is to establish common pre and post installation test methods, equipment, materials, and troubleshooting methodologies. QUALIFICATIONS AND TRAINING STANDARDS: The repair and maintenance of a fiber optic system should ONLY BE PERFORMED by qualified personnel.
Video

Reduction of CO2 Emissions using Variable Compression Ratio MCE-5 VCRi Technology - Facts & Prospects

2012-05-10
Downsizing and downspeeding are two efficient strategies to reduce vehicles CO2 emission, provided that high BMEP can be achieved at any engine speed under clean, safe, stable and efficient combustion. With a 6:1 minimum compression ratio, the MCE-5 VCRi achieves 40 bar peak BMEP at 1200 rpm with no irregular combustion. If peak BMEP is maintained below 35 bar, fuel enrichment is no longer necessary. When running at part loads, the engine operates at high compression ratios (up to 15:1) to minimize BSFC and maximize the sweet spot area on the map. Next generation MCE-5 VCRi engines will combine VCR and stoichiometric charges, highly diluted with external cooled EGR, in order to improve part loads efficiency by means of both the reduction in heat and pumping losses, and the optimization of compression-expansion ratio. This strategy, added to downsizing-donwspeeding, requires high-energy ignition systems to promote repeatable, stable, rapid and complete combustion.
X