Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Mapping of Fuel Anti-Knock Requirements for a Small Remotely Piloted Aircraft Engine

2016-11-08
2016-32-0045
Small remotely piloted aircraft (10-25 kg) powered by internal combustion engines typically operate on motor gasoline, which has an anti-knock index (AKI) of >80. To comply with the single-battlefield-fuel initiative in DoD Directive 4140.25, interest has been increasing in converting the 1-10 kW power plants in the aforementioned size class to run on lower AKI fuels such as diesel and JP-8, which have AKIs of ~20. It has been speculated that the higher losses (short-circuiting, incomplete combustion, heat transfer) that cause these engines to have lower efficiencies than their conventional-scale counterparts may also relax the fuel-AKI requirements of the engines. To investigate that idea, the fuel-AKI requirement of a 3W-55i engine was mapped and compared to that of the engine on the manufacturer-recommended 98 octane number (ON) fuel.
Technical Paper

Experimental Study of a Pre-Chamber Jet Igniter in a Turbocharged Rotax 914 Aircraft Engine

2013-04-08
2013-01-1629
An experimental study is performed to investigate the possibility of relaxing the octane requirement of a Rotax 914 engine equipped with a pre-chamber jet ignition system. A pre-chamber jet igniter with no auxiliary fuel addition is designed to replace the spark plug in cylinder two of the test engine and is evaluated across engine speeds ranging from 2500 to 5500 RPM. Experiments are performed across both normally aspirated and boosted configurations using regular 87 AKI gasoline fuel. Normally aspirated results at 98 kPa manifold absolute pressure show a 7-10° burn rate improvement with the jet ignition combustion system. Tests to determine the maximum load at optimal combustion phasing (no spark retard) are then conducted by increasing boost pressure up to maximum knock limits.
Technical Paper

Effect of Unsteady Flow on Intercooler Performance

2014-09-16
2014-01-2220
Two compact intercoolers are designed for the Rotax 914 aircraft engine to increase engine power and avoid engine knock. A study is performed to investigate the effects of unsteady airflow on intercooler performance. Both intercoolers use air-to-liquid cross flow heat exchangers with staggered fins. The intercoolers are first tested by connecting the four air outlets of the intercooler to a common restricted exit creating a constant back pressure which allows for steady airflow. The intercoolers are then tested by connecting the four air outlets to a 2.4 liter, 4 cylinder engine head and varying the engine speed from 6000 to 1200 RPM corresponding to decreasing flow steadiness. The test is performed under average flight conditions with air entering the intercooler at 180°F and about 5 psig. Results from the experiment indicate that airflow unsteadiness has a significant effect on the intercooler's performance.
Technical Paper

Control of Fuel Octane for Knock Mitigation on a Dual-Fuel Spark-Ignition Engine

2013-04-08
2013-01-0320
A two-port fuel-injection (PFI) system is added to a Rotax 914 four-cylinder spark-ignition engine to allow two fuels of different reactivity to be injected simultaneously in order to vary the fuel octane number during engine operation. Engine performance using the dual-fuel PFI system is compared to that using injection of primary-reference-fuel (PRF) blends via a single-PFI system for fuel octane ratings of 50, 70, and 87 octane. The on-the-fly octane control of dual-PFI system is found to control fuel-octane well enough to produce maximum indicated mean effective pressure (IMEPn) results within ± 2% of single-PFI PRF IMEPn results. IMEPn is compared among dual-PFI blends from 20 to 87 octane, neat n-heptane, neat JP-8, and JP-8/isooctane blends. Maximum IMEPn for these fuels is established for the Rotax 914 engine operating from 2500 to 5800 rev/min.
X