Refine Your Search

Topic

Search Results

Technical Paper

Unsafe System Operating Conditions – Preventing a Bad Day from Becoming a Really Bad Day

2024-03-05
2024-01-1926
The safety of commercial aviation industry has come under extensive scrutiny and how the system safety process is applied. One specific system safety regulation concerns how unsafe system operating conditions are meeting regulatory requirements. Minimal regulatory guidance was available on this topic and an industry committee (American Society for Testing of Materials) decided to provide a consensus standard with input from a cross-section of airplane manufacturers, suppliers, and regulatory authorities on what is meant by an unsafe system operating condition and how compliance can be shown to the regulation(s). The committee determined that an unsafe system operating condition is when a failure condition severity increases (to hazardous or catastrophic) due to crewmember(s) inaction. For example, if a hazard has occurred it is possible the severity can increase to an unacceptable level as the crewmember(s) are not aware of the hazard.
Technical Paper

The Impact of CFD on the Airplane Design Process: Today and Tomorrow

1991-09-01
911989
CFD now stands alongside the wind tunnel in terms of importance to aerodynamic design. Its usage by engineering designers involves many thousands of runs per year, and the rate is increasing. For the simpler aerodynamic flows where viscous effects are modest, CFD has become the dominant tool for aerodynamic design. The primary role of the wind tunnel for such flows is for validation of a design and for determination of aerodynamic characteristics over the broad flight envelope. For more complex flows that are dominated by strong viscous effects, CFD is beginning to make a contribution. It is thought by many that the principle challenge for the future is to develop better computers and algorithms in order to better address the computation of complex flows over complex airplane geometries. But recent experiences involving the application of CFD to the design of the new Boeing 777 airplane has taught us that the challenge for the future is really much broader.
Technical Paper

The Challenges Identifying Weather Associated With Jet Engine Ice Crystal Icing

2011-06-13
2011-38-0094
This paper presents the latest findings resulting from ongoing research on jet engine ice crystal icing. It specifically focuses on the challenges for pilots to identify and potentially avoid weather associated with this type of engine icing. The case will be made that jet engine power loss and damage events are not only still occurring, but the overall number of events per year is increasing. Several case studies will be presented to illustrate that each event can vary significantly when viewed from the flight deck even though weather conditions are similar for each. Findings will be presented related to new events that are occurring on engines that were not previously affected along with new engine symptoms. Ongoing meteorological research has shed new light on how to identify weather associated with engine events utilizing infrared satellite imagery combined with atmospheric temperature profiles.
Technical Paper

Studies of Cloud Characteristics Related to Jet Engine Ice Crystal Icing Utilizing Infrared Satellite Imagery

2015-06-15
2015-01-2086
The significant problem of engine power-loss and damage associated with ice crystal icing (ICI) was first formally recognized by the industry in a 2006 publication [1]. Engine events described by the study included: engine surge, stall, flameout, rollback, and compressor damage; which were triggered by the ingestion of ice crystals in high concentrations generated by deep, moist convection. Since 2003, when ICI engine events were first identified, Boeing has carefully analyzed event conditions documenting detailed pilot reports and compiling weather analyses into a database. The database provides valuable information to characterize environments associated with engine events. It provides boundary conditions, exposure times, and severity to researchers investigating the ICI phenomenon. Ultimately, this research will aid in the development of engine tests and ICI detection/avoidance devices or techniques.
Journal Article

Standard Approach to Identifying and Defining Functions for Systems Development and Safety Assessments

2022-03-08
2022-01-0008
The Safety Assessment Process, defined by SAE ARP4761 and associated regulatory guidance and the system development process defined by SAE ARP4754 are built on an understanding of the functions performed by a system or systems. [1, 2] These recommended practices do not provide, or reference, specific guidance regarding function definition, though they do provide some conventional airplane examples. ASTM E2013-20 describes function identification principles for cost evaluations, but does not consider how functions are used in safety assessments.[3] Without a systematic process for establishing and describing functions for safety assessments, the application of the development and safety assessment processes can be complicated by inappropriate function selections. Such functions may be overly inclusive, applied at the wrong level of abstraction, or might not describe the intended behaviors adequately.
Technical Paper

Reducing Design Time, Part Cost, and Manufacturing Risk on New Airplane Projects Using Intelligent Software Solutions

2007-09-17
2007-01-3927
New and derivative commercial jetliner programs face increased pressure to reduce cost, shorten development cycles, increase production rates, and create an increasingly fuel efficient aircraft. The industry also has limited engineering resources and suppliers with manufacturing capacity constraints. Designing parts right the first time, while concurrently taking into account available and proven manufacturing techniques, is crucial to meeting product development schedule and profitability goals. New, knowledge-based software solutions bridge the gap between design, manufacturing, and the supply chain, assuring timely, cost effective, and correctly manufactured products. Boeing Commercial Airplanes used a unique knowledge-based software solution to analyze one of the most complicated jetliner parts: the titanium part joining the wing to the aircraft body.
Technical Paper

Reconfigurable Fixturing

2004-09-21
2004-01-2837
An innovative reconfigurable fixture was developed by the Boeing Company to hold spars while performing fastening and drilling operations, reducing cost, maintenance and increasing accuracy.
Technical Paper

Quantifying the Fuel Consumption Penalties for an Operational Contrail Avoidance System

2009-11-10
2009-01-3151
Recent work has shown that when an aircraft encounters ambient ice-supersaturated conditions (where contrails may form and persist), it may be possible to avoid contrail formation by shifting cruise altitude up or down 2000 feet. If an aircraft's cruise altitude is shifted from the optimal profile during a portion of the mission, fuel consumption increases. Because on average approximately 20% of distance flown by commercial airliners is through ice-supersaturated regions, this study quantifies the fuel burn penalties for the notional scenario of flying the same fraction of cruise at altitude displacements of +2000, -2000, and -4000 ft. Present aircraft performance data was used to generate accurate fuel burn penalty estimates. This study finds that the net penalties for existing aircraft to fly contrail avoidance shifts vary between 0.2% and 0.7% increase in block fuel consumption.
Technical Paper

Production Implementation of a Multi Spindle Flexible Drilling System for Circumferential Splice Drilling Applications on the 777 Airplane

2009-11-10
2009-01-3090
With the recent development of a multi spindle flex track drilling system for aerospace applications, the challenges of testing and implementation on existing airplane programmes require unique technical methodologies and solutions. This paper discusses the technical approach, problems encountered and methodologies/solutions used to successfully implement a multi spindle flex track drilling system for circumferential splice drilling on the 777 airplane. The multi spindle system uses varieties of flex track carriages attached to flexible vacuum tracks for wide inside drilling. The hardware and software challenges encountered during the interfacing of the multi spindles are discussed as well as the complex problem of indexing and locating all detailed components of the splice accurately and with high repeatability.
Technical Paper

Post-Machining Distortion of Formed Fuselage Frame Segments

2001-09-10
2001-01-2594
Process development work was conducted to develop a machined fuselage frame concept for a small (5 abreast) commercial airplane. To minimize detail fabrication cost and to facilitate lean manufacturing, roll forming was identified as the preferred forming process. To reduce assembly costs, long frame segments were desired to minimize the number of frame splices. Since plate stock is limited to lengths of approximately 3.66 meters (12 feet), formed aluminum extrusions were selected as the raw material form. Roll forming and stretch forming process paths were screened for both J section and rectangular bar extrusions. The post machining distortion produced in formed extrusion and plate hog-out frame segments was compared to each other and to process standards governing allowable fit-up forces. As a result of this process development activity, a producible roll forming process path was developed.
Journal Article

Planning for the Application of ARP4754A for New and Modified Aircraft Projects with New, Simple, and Reused Systems

2015-09-15
2015-01-2431
Aerospace Recommended Practice (ARP) 4754 Revision A (ARP4754A), “Guidelines for Development of Civil Aircraft and Systems,” [1] is recognized through Advisory Circular (AC) 20-174 (AC 20-174) [2] as a way (but not the only way) to provide development assurance for aircraft and systems to minimize the possibility of development errors. ARP4754A and its companion, Aerospace Information Report (AIR) 6110, “Contiguous Aircraft/System Development Process Example,” [3] primarily describe development processes for an all new, complex and highly integrated aircraft without strong consideration for reused systems or simple systems. While ARP4754A section 5 mentions reuse, similarity, and complexity, and section 6 is intended to cover modification programs, the descriptions in these sections can be unclear and inconsistent. The majority of aircraft projects are not completely new Products nor are they entirely comprised of complex and highly integrated systems.
Journal Article

Panel Assembly Line (PAL) for High Production Rates

2015-09-15
2015-01-2492
Developing the most advanced wing panel assembly line for very high production rates required an innovative and integrated solution, relying on the latest technologies in the industry. Looking back at over five decades of commercial aircraft assembly, a clear and singular vision of a fully integrated solution was defined for the new panel production line. The execution was to be focused on co-developing the automation, tooling, material handling and facilities while limiting the number of parties involved. Using the latest technologies in all these areas also required a development plan, which included pre-qualification at all stages of the system development. Planning this large scale project included goals not only for the final solution but for the development and implementation stages as well. The results: Design/build philosophy reduced project time and the number of teams involved. This allowed for easier communication and extended development time well into the project.
Technical Paper

Monolithic Structure Affordability: 737 Classic Versus Next Generation

2003-09-08
2003-01-2909
One recent evolution in commercial transport structure has been the emergence of monolithic structure applications. Monolithic structure reduces the number of parts that must be managed, eliminates sub-assembly operations and contributes strongly to determinant assembly practices. The cost of three components from the Boeing 737-200 and their counterparts on the Boeing 737-600 will be compared. The mid 1960's 737-200 components were assembled from sheet metal details. The mid 1990's 737-600 components are monolithic designs and utilize superplastic forming, casting and NC machining technologies. The built-up solutions and the monolithic solutions are compared based on cost infrastructures from the 1960's and the 1990's.
Technical Paper

Implementation of an Uncertainty Analysis Process to SEA Predictions

2007-05-15
2007-01-2312
A process is implemented to propagate uncertainties inherent to the Statistical Energy Analysis (SEA) modeling practice to variance in predictions. A Monte Carlo based approach is scripted for the VA-One environment to account for uncertainties in gross parameters of SEA model subsystems. The variance module of the commercial software is used to estimate possible variations in local modal properties. A first-order expansion solution is applied to integrate uncertainties in the power inputs of the system. The impact of each type of source is assessed in computing overall variance in predictions. The process is applied to analysis of in-flight interior cabin noise predictions using a simplified aft fuselage section SEA model.
Journal Article

Generalizing Aspects of System Safety to Broaden Applicability

2021-03-02
2021-01-0037
The Safety Assessment Process, defined by SAE ARP4761 and associated regulatory guidance, is described in the context of conventional, crewed civil aircraft. While this material has been used for decades to evaluate airplanes and rotorcraft, the evolution of technology challenges it. As new entrants venture into aviation, they bring perspectives, which may not clearly align to those conventional concepts. For those skilled in the art of aviation safety assessment, the approach to new technologies might appear straight forward. Such an individual might easily perceive the accommodations for unconventional applications. Once accommodations are made, and failure conditions are established and classified to those new architectures, the rest of the process is somewhat mechanical -they flow out of these conditions. However, the context of their experience betrays the reality of the process description in the ARP and guidance.
Technical Paper

Finding and Using the Soul of Systems Engineering

2015-09-15
2015-01-2452
The Systems Engineering (SE) “Vee” is generally recognized as one of the primary identifying features of Systems Engineering processes. While there are many specifications which include SE in their titles and show a version of the “Vee” in their process descriptions, there are other specifications which make no claim to be an SE standard but show a “Vee” describing the processes in the specification. There are also specifications which appear to be completely unrelated to SE but describe processes which are very much SE. This wide variety of documents points to the possibility of identifying the common core which composes SE (the soul of Systems Engineering). To search for the soul of SE, the words in two recognized SE standards along with the National Aeronautics and Space Administration (NASA) SE standard and multiple Federal Aviation Administration (FAA) standards have been analyzed for alignment of and differences between the models.
Technical Paper

Experimental Comparison of Test Methods for Structure-borne Sound Power Measurement

2007-05-15
2007-01-2169
The objectives of this work are to search for a structure-borne sound power measurement method that can be consistently deployed among different test facilities, and to investigate how test results can be compared at different test stands. A series of experimental tests are conducted to compare selected test methods by measuring structure-borne power transmitted from simulated mechanical sources to a supporting plate through single contact and multiple contacts, respectively. The frequency range of interest in these tests is a broad range from 100Hz to 10 kHz. Test methods under this experimental study include the cross-spectral method, the mobility method and the reverberant plate method. In addition, simplified mobility methods based on ideal sources and the synthesized force are also examined. Advantages and limitations of each test methods are discussed from a practical industrial standpoint.
Technical Paper

Example Application of a Standard Approach to Identifying and Defining Functions for Systems Development and Safety Assessments

2023-03-07
2023-01-0978
The Safety Assessment Process defined by SAE ARP4761 [1] and associated regulatory guidance and the system development process defined by SAE ARP4754 [2] are built on an understanding of the functions performed by a system or systems. SAE Technical Paper 2022-01-0008 [3] proposes a process to assist the system or product developer with identifying and describing functions at each level of abstraction used in describing the architecture. This paper walks through the process described in SAE Technical Paper 2022-01-0008, examining some of the issues and considerations encountered using this approach, and resulting in an example function list for a passenger aircraft. The example aircraft is typical except that an autonomous operating mode is included.
Technical Paper

Embracing Remote Technology in the System Safety World

2023-03-07
2023-01-1014
The advent of the Covid-19 pandemic that began at the end of 2019 accelerated technology to support remote work environments. While the technologies were not new, the capabilities of those technologies significantly increased. The number of users embracing the remote working technologies significantly increased within a very short timeframe. The expanded remote work capabilities have enabled new collaborating mechanisms that will carry-forth in the future, pandemic or not. SAE ARP 4761 [1] provides guidelines to perform a safety assessment. The Zonal Safety Assessment (ZSA) is one of the tools described in ARP 4761. An aspect of ZSA is an audit (or inspection) of the physical article. The remote work capabilities, along with cameras and software presenting a virtual environment, can allow individuals to participate in the physical audit without traveling to the site of the physical article.
X