Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

SP-100 Thermoelectric Converter Technology Development

1992-08-03
929311
As part of the SP-100 Space Reactor Power System Program being undertaken for the U. S. Department of Energy, GE is developing a thermoelectric (T/E) power converter which utilizes reactor delivered heat and transforms it into usable electric power by purely static means. This converter is based to GE's product line of successful thermoelectric space power systems. The SP-100 power converter embodies the next generation improvement over the type of T/E converter successfully flown on the six U. S. space missions. That is, conduction coupling of T/E cell to both the heat source and the heat rejection elements. The current technology utilizes radiation coupling in these areas. The conduction coupling technique offers significant improvements in system specific power since it avoids the losses associated with parasitic ΔT's across the radiation gap between the heat source and the hot junction of the thermoelectric (T/E) cell.
Technical Paper

SP-100 Space Reactor Power System Readiness

1992-08-03
929308
The SP-100 Space Reactor Power System is being developed by GE, under contract to the U.S. Department of Energy, to provide electrical power in the range of 10's to 100's of kW. The system represents an enabling technology for a wide variety of earth orbital and interplanetary science missions, nuclear electric propulsion (NEP) stages, and lunar/Mars surface power for the Space Exploration Initiative (SEI). An effective infrastructure of Industry, National Laboratories and Government agencies has made substantial progress since the 1988 System Design Review. Hardware development and testing has progressed to the point of resolving all key technical feasibility issues. The technology and design is now at a state of readiness to support the definition of early flight demonstration missions. Of particular importance is that SP-100 meets the demanding U.S. safety, performance, reliability and life requirements.
Technical Paper

SP-100 Position Multiplexer and Analog Input Processor

1992-08-03
929233
This paper describes the design, implementation, and performance test results of an engineering model of the Position Multiplexer (MUX)-Analog Input Processor (AIP) System for the transmission and continuous measurements of Reflector Control Drive position in SP-100. The specially tailored MUX-AIP combination multiplexes the sensor signals and provides an increase in immunity from low frequency interference by translating the signals up to a higher frequency band. The modulated multiplexed signals are transmitted over a single twisted shielded cable pair from the reflector drives located near reactor to the AIP located at the power conditioning/system controller end of the space craft boom. There the signals are demultiplexed and processed by the AIP, eliminating the need for individual cables for each of the twelve position sensors across the boom.
Technical Paper

SP-100 Nuclear Subsystem Hardware and Testing

1992-08-03
929309
The term “SP-100” is synonymous with a set of technologies that can be utilized to provide long lifetime, reliable, safe space power over the range of kilowatts to megawatts [1] using a nuclear reactor as the heat source. This paper describes recent development progress in a number of technology areas such as fuel, materials, reactivity control mechanisms and sensors. Without exception, excellent technical progress is being accomplished in all areas under development to optimize spacecraft performance characteristics.
Technical Paper

SP-100 Initial Startup and Restart Control Strategy

1992-08-03
929231
Recent Generic Flight System (GFS) updates have necessitated revisions in the initial startup and restart control strategies. The design changes that have had the most impact on the control strategies are the addition of the Auxiliary Cooling and Thaw (ACT) system for preheating the lithium filled components, changes in the reactivity worths of the reflectors and safety-rods such that initial cold criticality is achieved with only a small amount of reflector movement following the withdrawal of the safety-rods, and the removal of the scram function from the reflectors. Revised control and operating strategies have been developed and tested using the SP-100 dynamic simulation model, ARIES-GFS. The change in the total reactivity worths of the reflectors and safety-rods has eliminated the need for the use of fast and slow reflector drive speeds during the initial on-orbit approach to criticality.
Technical Paper

SP-100 Early Flight Mission Designs

1992-08-03
929447
Early flight mission objectives can be met with a Space Reactor Power System (SRPS) using thermoelectric conversion in conjunction with fast spectrum, lithium-cooled reactors. This paper describes two system design options using thermoelectric technology to accommodate an early launch. In the first of these options, radiatively coupled Radioisotope Thermoelectric Generator (RTG) unicouples are adapted for use with a SP-100-type reactor heat source (Deane 1992). Unicouples have been widely used as the conversion technology in RTGs and have demonstrated the long-life characteristics necessary for a highly reliable SRPS (Hemler 1992). The thermoelectric leg height is optimized in conjunction with the heat rejection temperature to provide a mass optimum 6-kWe system configured for launch on a Delta II launch vehicle. The flight-demonstrated status of this conversion technology provides a high confidence that such a system can be designed, assembled, tested, and launched by 1996.
Technical Paper

Re-Establishment of RTG Unicouple Production

1992-08-03
929481
The approach that was utilized to start up and requalify manufacture of the thermoelectric unicouple devices for the Cassini RTG (Radioisotope Thermoelectric Generator) program are described in this paper. Key elements involved in this effort were: engineering review of specifications; training of operators; manufacturing product verification runs; and management review of results. Appropriately, issues involved in activating a fabrication process that has been idle for nearly a decade, such as upgrading equipment, adhering to updated environmental, health, and safety requirements, or approving new vendors, are also addressed. The cumulative results of the startup activities have verified that a production line for this type of device can be reopened successfully.
Technical Paper

High Temperature Turbine Design Considerations

1971-02-01
710462
The major technological developments which have made possible the trend towards higher temperatures in modern aircraft gas turbine engines are discussed. The relative importance of manufacturing processes, material developments, cooling techniques, analytical design procedures, rupture and cyclic life considerations, and aerodynamic and mechanical design improvements are discussed along with illustrative examples and technical data. The need for a balanced design approach is stressed, and examples are given where trade-offs can be made. It is noted that the advances in aircraft engines during the last 10 years have been based on the evolution of sound engineering principles, extensive component and engine development, and careful consideration of the operational requirements rather than a tremendous breakthrough or revolutionary concept in any one area.
X