Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Analysis of Aerobatic Flight Safety Using Autonomous Modeling and Simulation

2000-04-11
2000-01-2100
An affordable technique is proposed for fast quantitative analysis of aerobatics and other complex flight domains of highly maneuverable aircraft. A generalized autonomous situational model of the “pilot (automaton) – vehicle – operational environment” system is employed as a “virtual test article”. Using this technique, a systematic knowledge of the system behavior in aerobatic flight can be generated on a computer, much faster than real time. This information can be analyzed via a set of knowledge mapping formats using a 3-D graphics visualization tool. Piloting and programming skills are not required in this process. Possible applications include: aircraft design and education, applied aerodynamics, flight control systems design, planning and rehearsal of flight test and display programs, investigation of aerobatics-related flight accidents and incidents, physics-based pilot training, research into new maneuvers, autonomous flight, and onboard AI.
Technical Paper

A General Effectiveness Methodology for Aircraft Survivability Assessments

1987-10-01
871905
The quantification of aircraft survivability in modern battlefield environments is a complex mathematical problem. In general, consideration must be given to the quantification of aircraft vulnerability to individual weapon systems, single encounter aircraft survivability, and the mathematical mapping of single encounter aircraft survivability into mission attrition. A methodology for quantifying the impacts of electronic warfare (EW) upon aircraft survivability is realized by the General Effectiveness Methodology (GEM) which is based upon a hierarchy of computer models. This paper describes this hierarchy of computer simulation tools which extensively employs probability theory to estimate the various engagement events such as aircraft detection, acquisition, missile launch, missile intercept, and probability of aircraft kill.
X