Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Selection of an Alternate Biocide for the International Space Station Internal Active Thermal Control System Coolant Loops

2003-07-07
2003-01-2568
The International Space Station (ISS) IATCS (Internal Active Thermal Control System) includes two internal coolant loops that use an aqueous based coolant for heat transfer. A silver salt biocide was used initially as an additive in the coolant formulation to control the growth and proliferation of microorganisms in the coolant loops. Ground-based and in-flight testing has demonstrated that the silver salt is rapidly depleted and not effective as a long-term biocide. Efforts are now underway to select an alternate biocide for the IATCS coolant loop with greatly improved performance. An extensive evaluation of biocides was conducted to select several candidates for test trials.
Technical Paper

Selection of an Alternate Biocide for the ISS Internal Thermal Control System Coolant - Phase II

2004-07-19
2004-01-2472
The ISS (International Space Station) ITCS (Internal Thermal Control System) includes two internal coolant loops that utilize an aqueous based coolant for heat transfer. A silver salt biocide had previously been utilized as an additive in the coolant formulation to control the growth and proliferation of microorganisms within the coolant loops. Ground-based and in-flight testing demonstrated that the silver salt was rapidly depleted, and did not act as an effective long-term biocide. Efforts to select an optimal alternate biocide for the ITCS coolant application have been underway and are now in the final stages. An extensive evaluation of biocides was conducted to down-select to several candidates for test trials and was reported on previously.
Technical Paper

An Improved Pyrolyzer for Solid Waste Resource Recovery in Space

2002-07-15
2002-01-2402
Pyrolysis processing is one of several options for solid waste resource recovery in space. It has the advantage of being relatively simple and adaptable to a wide variety of feedstocks and it can produce several usable products from typical waste streams. The overall objective of this study was to produce a prototype mixed solid waste pyrolyzer for spacecraft applications. A two-stage reactor system was developed which can process a maximum of about 0.5 kg of waste per cycle. The reactor includes a pyrolysis chamber where the waste is heated to temperatures above 600 °C for primary pyrolysis. The volatile products (liquids, gases) are transported by a N2 purge gas to a second chamber which contains a catalyst bed for cracking the tars at temperatures of about 1000-1100 °C. The tars are cracked into carbon and additional gases. Most of the deposited carbon is subsequently gasified by oxygenated volatiles (CO2, H2O) from the first stage.
X